
Automated Partitioning for Partial Reconfiguration
Design of Adaptive Systems

Kizheppatt Vipin, Suhaib A. Fahmy
School of Computer Engineering

Nanyang Technological Univesity

Nanyang Avenue, Singapore

{vipin2,sfahmy}@ntu.edu.sg

Abstract—Adaptive systems have the ability to respond to en-
vironmental conditions by modifying their processing at runtime.
This can be implemented by using partial reconfiguration (PR)
on FPGAs. However, designing such systems requires specialist
architecture knowledge and an understanding of the mechanics
of reconfiguration, as the design process is completely manual.
One design choice that must be made, which impacts system
efficiency significantly, is how to group reconfigurable modules
and assign them to reconfigurable regions on the FPGA. In
this paper, we present an approach, based on graph clustering,
that finds a partitioning that minimises reconfiguration time,
given an application description and target FPGA. The resulting
allocation respects all the constraints set by the official tool flow
while raising the level of design abstraction, allowing non-expert
designers to leverage this capability of FPGAs.

Index Terms—Field programmable gate arrays; partial recon-
figuration; design automation.

I. INTRODUCTION

Adaptive systems are able to adapt their functionality to

variations in their environment, leading to more sophisticated

applications and improved system performance. For example,

a cognitive radio can switch between sensing and transmission

modes autonomously, without the need for both circuits to

be on the FPGA at the same time [1]. Field Programmable

Gate Arrays (FPGAs) are finding increased use in a wide

range of application domains due to their high performance

and flexibility. Partial reconfiguration (PR) is a promising

technique for implementing dynamic hardware systems on

FPGAs. It allows modification of portions of the system, while

the remaining parts continue to function without interruption,

through partial modification of the configuration memory. This

allows for more fine-grained flexibility, time-multiplexing of

multiple functions on smaller FPGAs, and hence, a reduction

in power consumption and cost.

Designing PR systems, however, presents a number of

challenges which mean adoption has not been widespread.

Current PR tools require considerable input from the designer,

and the efficiency of the implementation depends significantly

on how the design is manually partitioned and floorplanned

on the FPGA. Both of these design choices are closely related

to the FPGA architecture and detailed aspects of the PR

operation. The result is that PR is less attractive to system

designers who are not FPGA experts.

A PR system consists of a number of modules, that together

undertake the required processing in the system. At any point

in time, a subset of these modules may be required. These

modules are implemented in reconfigurable regions (RRs).

These are areas of the FPGA fabric, designated at design

time, which can be reconfigured at runtime. Determining the

number of reconfigurable regions and allocating modules to

them constitutes the design partitioning step.

When designing PR systems, one primary cost we aim to re-

duce is reconfiguration time. This is the time taken to configure

the system from one operating mode to another. For several

domains such as ad-hoc communication, space applications,

real-time systems, and others, long reconfiguration times can

adversely impact system performance. Since reconfiguration

time is primarily proportional to the area being reconfigured,

partitioning needs to be performed with due consideration of

these factors.

In this paper, we propose a scheme for automatically

determining the region allocation with minimal reconfiguration

time for a given application and FPGA device. We consider

the latest generation of FPGA architectures and development

tools. The proposed algorithm uses detailed architecture infor-

mation to determine how best to group modules to minimise

reconfiguration time. While some related work on partitioning

for time-multiplexing static task graphs on FPGAs has been

presented in the past, we are interested in adaptive systems,

where the pattern of reconfiguration is not known in advance.

The proposed method uses the limited information available

in such cases to deduce an optimal partitioning.

The rest of this paper is organised as follows: Section

II discusses related work. Section III describes important

factors in PR design and investigates the existing flow for

Xilinx FPGAs, Section IV presents the algorithm used for

partitioning. Section V presents some results for an example

application and some synthetic applications, and Section VI

concludes the paper.

II. RELATED WORK

The authors of [2] identified some of the challenges asso-

ciated with PR designs and introduced partitioning, although

no specific algorithm was provided. A method for reducing

reconfiguration time using integrated temporal partitioning

and partial reconfiguration was introduced in [3]. It describes

a partially reconfigurable processor with two reconfigurable

2013 IEEE 27th International Symposium on Parallel & Distributed Processing Workshops and PhD Forum

978-0-7695-4979-8/13 $26.00 © 2013 IEEE

DOI 10.1109/IPDPSW.2013.119

172

regions for execution speed up. Similar work is presented in

[4], in which a pre-fetching schedule is generated based on

control flow graphs. Unfortunately for adaptive systems, direct

scheduling based on task graphs is not possible due to the lack

of a-priori knowledge of reconfiguration sequence. In these

previous efforts, a static task graph is dynamically scheduled

on limited resources. In the case of adaptive systems, the

task graph itself is dynamic as it responds to environmental

conditions.

In [5], the authors present a method for minimising reconfig-

uration latency based on analysing communication graphs. The

algorithm tries to group modules with the most communication

between them into the same reconfigurable region. However,

the number of reconfigurable regions must be determined

by the designer. Determining the number of regions is not

straightforward, and current devices and tools do not provide

any support in this respect.

In [6], the authors describe run-time temporal partitioning

for reducing FPGA reconfiguration time. Here, the number of

reconfigurable regions is fixed and resources are assumed to

be homogeneous. The number and size of the regions needs

to be determined by the designer.

A more recent paper that explores partitioning and floor-

planning of PR designs is [7]. The authors describe a simulated

annealing based algorithm for determining the module allo-

cation to regions based on minimisation of area requirement

variance at different time instances. This work considers the

latest FPGA architectures as well as PR requirements. It is

difficult to extend this work for adaptive systems because the

algorithm presented makes use of a scheduled task graph.

Moreover the impact on reconfiguration time is not accounted

for in their method.

Most existing work we have found does not perform

partitioning in a manner that considers the runtime aspects

of partial reconfiguration and does not consider the latest

FPGA architectures. In our previous work [8], we introduced

a method for PR partitioning with the aim of minimising

area and average reconfiguration time. The optimal solution

was determined based on solving several exact equations.

This paper improves on our previous work by allowing more

flexible module arrangements, and optimises primarily for

reconfiguration time, by using all the resources available in the

target FPGA, since this is a key factor in the implementation

of such systems. Developing a general method that can be

used for adaptive systems with dynamically changing pro-

cessing needs, while considering the limitations of the target

architecture, is thus important to the wider adoption of partial

reconfiguration.

III. PR TOOL FLOW

A. Present PR Tool Flow

Presently, the only vendor-supported PR flow is available

from Xilinx through their PlanAhead software. Altera an-

nounced support for partial reconfiguration in their Stratix V

devices [9], but the software tools are not yet publicly avail-

able. From the available documents, Altera’s PR design flow is

�

��

��

��

��

��

��

��

��

Fig. 1. An example PR design with a static region (S) and 3 modules (A,
B, and C).

similar, including manual partitioning and floorplanning [10].

In our discussions, we will focus on the available Xilinx tool-

chain and associated devices.

Fig. 1 shows an example PR design. The design is divided

into static logic and reconfigurable modules. The functionality

of the static logic does not change during operation. The static

logic usually contains an embedded processor, the internal

configuration access port (ICAP), and other fixed circuitry.

The embedded processor runs the configuration management

software, which controls system transition from one configu-

ration to another depending upon the adaptation conditions set

by the application. The ICAP is used to load partial bitstreams

into the FPGA configuration memory.

A PR system consists of a number of modules. At the

system level, we can think of a module as a processing

unit that may have multiple modes. Modes are mutually

exclusive implementations of a module that might be activated

at different points in time. with compatible inputs and outputs.

For example, a filter module can have two modes, one acting

as a high-pass filter and one acting as a low-pass filter. At

runtime, a module may switch from one mode to another. In

Fig. 1, module S represents the static logic and modules A,

B, and C represent reconfigurable modules with modes A1,

A2, A3; B1, B2; and C1, C2, C3 respectively.

A reconfigurable region (RR) is an area on the device

allocated to logic during design time, that is reconfigured

during runtime. It includes different types of basic primitives

such as configurable logic blocks (CLBs), BlockRAMs, and

DSP Slices. Normally, it is up to the designer to specify a

region large enough to implement all the modules assigned

to that region, requiring FPGA architecture knowledge. The

designer must then use the implementation tools to build

netlists for each region, for different modes. Two standard

approaches are to put all reconfigurable modules into a single

reconfigurable region, or to put each module into a separate

region.

The set of valid combinations of modes encountered at

runtime are called the configurations. In the example design,

S → A1 → B1 → C1 may be a possible configuration.

Each configuration contains the static logic and one of the

possible modes for each reconfigurable module. It is possible

to have configurations, where some modules do not exist.

For example, S → A2 → B2, in which module C does not

173

���������	
��	

�����	�
����	

����
����
�	�������������������
�����
��

����
�����
��	

�
�
������	���
��	

�������	�
����

���	�	��	��
�����	���

����
���
�����

�������	���
��	

Fig. 2. Proposed partial reconfiguration tool flow.

exist. Typically the valid configurations are only a subset of

the possible configurations. The example design here could

be defined as having 5 configurations:

S → A3 → B2 → C3

S → A1 → B1 → C1

S → A3 → B2 → C1

S → A1 → B2 → C2

S → A2 → B2 → C3

In the current vendor tool flow, configurations do not play

any role in synthesis, since the reconfigurable modules and

the assignment of regions, are performed manually. The de-

signer must prepare netlists for valid combinations of module

modes for each region. However, these configurations play an

important part in finding a good partitioning.

The designer must also decide where to place the regions

on the FPGA, ensuring sufficient resources to implement all

reconfigurable modules assigned to each region. Hence, PR

design, as supported currently, is very much a floorplanning

activity.

In our work, we consider configurations, allowing us to

minimise the search space when determining a suitable par-

titioning. Unlike some previous work, our method does not

require the the designer to set the number of PRRs to be used,

or the size and composition of PRRs for partitioning.

B. Proposed Tool Flow

The proposed partitioning algorithm is part of a design

flow we are developing for high-level design of adaptive

systems using PR. Our proposed tool flow for PR is shown

in Fig. 2. The designer provides design files for all modules

(in all modes), a list of valid configurations, and design

implementation constraints such as timing constraints and

target FPGA device to the tool in XML format. The tools

perform the following steps:

1) Xilinx XST is used to synthesise all the modes to

determine resource requirements. If IP cores are used for

some modules, resource usage is often available up front.

FPGA resource numbers are obtained from a device

library that details the number of CLBs, Block RAMs

and DSPs for various families and devices.

2) The resource requirements are passed to the partitioning

algorithm, which performs an automated region alloca-

tion that minimises reconfiguration time while meeting

the area constraints of the FPGA device selected.

3) Wrapper modules are created that group together modes

that have been combined in the partitioning phase.

4) A netlist for each partition is then automatically gener-

ated using vendor synthesis tools.

5) Floorplanning of the static and reconfigurable regions

must then be performed. We use the approach in [11].

Alternatively, a manual approach using Xilinx PlanA-
head is also possible.

6) The area constraints generated by the floorplanner along

with timing requirements, are used to generate the

User Constraints File. Together with the netlists, this

is passed to PlanAhead, which performs the placement

and routing operations according to the constraints.

7) Finally, a complete configuration bitstream and partial

bitstreams for each region under different configurations

are generated.

IV. PROBLEM FORMULATION

A. Background

Designers generally adopt two simple methods for parti-

tioning PR designs. The first is to assign all reconfigurable

modules to a single region and the second is to assign each

module to a separate region, allowing each region to be

reconfigured to one of the modes at any point in time. Consider

two modules, A and B, as an example. Each module has a

large (A2 and B1) and a small mode (A1 and B2), as shown

in Fig. 3. Assume then, that three valid system configurations

are defined as A1 → B1, A2 → B2, and A1 → B2. The

static implementation with all the module modes implemented

concurrently requires minimum reconfiguration time, equal to

a few clock cycles to switch the multiplexers to change the

modes, but the total resource consumption will be the sum of

the resource requirements of all modes. This is often infeasible

due to restricted resources, and is inefficient since a larger

FPGA with higher power consumption must be used, despite

the fact that parts of the circuit are never active at the same

time.

If each module is assigned to a separate region, each

region must be large enough for the largest mode of the

corresponding module assigned to it. For the example, in

Fig. 3, there would be two regions: one large enough for

A2 and the other large enough for B1, and hence the total

resource requirement is the sum of the resource requirements

of these two modes. Any system reconfiguration will require

configuring at least one reconfigurable region, and in one

case both (when the system switches from A1 → B1 to

A2 → B2). However, if the modules were combined into

a single region, that region only needs to be large enough

for the largest overall configuration. In this case, the size of

174

A1

A2

B1

B
2

A1
B
2

R1 R2

A1

A2

B1

B
2

A1
B
2

R1

> <

conf 1

conf 2

conf 3

Fig. 3. When assigning modules to separate regions, if some configurations
do not exist, combining modules into a single region can save area.

the single region will be that of {A1, B1}. This is because

the largest modes, A2 and B1, do not co-exist among the

possible system configurations. This scheme gives the lowest

resource requirement. Here, the drawback is that any system

reconfiguration requires reconfiguring the entire region, which

increases the reconfiguration time for certain transitions.

Finally consider a hybrid case. Suppose A2 and B1 are im-

plemented in a single region and A1 and B2 are implemented

as static logic. The total resource consumption in this case will

be the sum of B1, A1 and B2. A close examination will reveal

that the resource consumption in this case is close to that of

assigning each module to a separate region, and much less

than a complete static implementation. Since A1 and B2 are

in static logic, several configuration switches do not require

reconfiguration, thus reducing overall reconfiguration time.

The example shows that there is no one simple solution,

and that configurations are key to determining an efficient

allocation. Although adaptive systems are dynamic in nature,

we can often determine a restricted set of valid configurations.

Hence, the system designer can be aware of valid configura-

tions, although it may be impossible to determine the order in

which the system will switch between them, since this depends

on environmental conditions.

The important conclusions from this initial analysis are:

• The minimum area required to implement a design is the

area required for the largest configuration,

• reconfiguration time is proportional to the area being

reconfigured,

• minimising the number of modes implemented in recon-

figurable regions reduces reconfiguration time,

• modes that always reconfigure together should be placed

in the same region.

The major constraints associated with PR design are re-

source availability in the target FPGA and reconfiguration

time. The target FPGA may already be decided, or alterna-

tively, the designer may like to determine the most suitable

FPGA. The tool should be enable us to optimise for both

these scenarios. Once an FPGA is determined, it makes sense

to make full use of the available resources, since trying to

minimise area would then have minimal impact on design cost,

while likely impacting reconfiguration time significantly.

The partitioning problem can be modelled as: Given:

CLB Tile

DSP Tile

BR Tile

One Frame

C
L
B
B
lo
ck

D
S
P
B
lo
ck

B
R
B
lo
ck

ROW1 TOP

ROW0 TOP

ROW0 BOTTOM

ROW1 BOTTOM

Fig. 4. Xilinx Virtex 5 FPGA architecture.

1) an FPGA with specific resource availability (optional),

2) a set of design modules and their modes,

3) a set of valid configurations,

partition the design in such a way that:

1) the design fits in the FPGA,

2) all configurations are implemented,

3) all configuration transitions are possible,

4) total reconfiguration time is minimised.

B. Architecture Analysis

This section discusses how area is calculated for Xilinx

FPGAs. Xilinx Virtex FPGAs are divided into rows1 and

columns. The number of rows in a device depends upon the

size of the device. Resources such as CLBs, Block RAMs etc.

are arranged in a columnar fashion extending the full height

of the device and these columns are referred to as blocks. A

tile is one row high and one block wide, and contains a single

type of resource, as shown in Fig. 4, and is the smallest unit

that can be partially reconfigured using the supported flow.

One CLB tile contains 20 CLBs, one DSP tile contains 8

DSP Slices, and one BRAM tile contains 4 Block RAMs. To

properly determine the area of a region, we must consider it in

terms of these basic tiles since configuration must occur on a

per tile basis. It is possible to allocate partial tiles to a region,

but this creates other constraints: the remainder of the tile must

not be allotted to any other region, and additional circuitry is

required to read the contents of the configuration memory, add

the reconfiguration information, then re-write, hence, we avoid

this. Xilinx imposes additional constraints such as PR regions

being rectangular in shape and not overlapping.

In Virtex FPGAs, the smallest addressable unit of config-

uration memory is called a configuration frame (frame). In

Virtex-5 FPGAs, the height of a frame spans an entire device

1Note “rows” here refers to a Xilinx term used in their architecture
descriptions.

175

row [12]. One CLB tile contains 36 frames, a DSP tile 28

frames and a BRAM tile 30 frames. The area requirement of

a region can hence be calculated in terms of frames using the

formula

Arear =
∑
i

Wi ∗Rri (1)

where i is the tile type, i ε (CLBs, DSP blocks, BlockRAMs),

Rri is the number of tiles of type i present in region r,

Wi is the number of frames in tile type i.
A frame contains 41 words or 1312 bits of data, mapped to

an equivalent space in the configuration memory.

Since reconfiguration time is proportional to the amount

written to the configuration memory, it is proportional to

the total number of frames being reconfigured. The actual

reconfiguration time also depends upon additional factors

such as the delay in fetching partial bitstreams from external

memory and transfer speed through the internal configuration

interface (ICAP).

C. Algorithm

The proposed algorithm tries to determine the best parti-

tioning scheme for a given PR system. This algorithm can be

used to find the best partition for a given FPGA or can suggest

the smallest FPGA suitable to implement the given design.

The minimum possible area required for system implemen-

tation will be the area of the largest configuration (when all

the modes are implemented in a single reconfigurable region).

Hence, the algorithm first checks implementation feasibility

by comparing this area with the resource availability of the

given FPGA. If the resource availability is insufficient, the

device choice is rejected and another device must be chosen.

If a solution is feasible, a connectivity matrix is generated

with each row representing a configuration and each column

representing a reconfigurable module. An element (i, j) in

the matrix with value 1 represents mode j being present in

configuration i. For the example design in Section-III, for the

5 configurations, the matrix representation is given below.
⎡
⎢⎢⎢⎢⎢⎢⎣

A1 A2 A3 B1 B2 C1 C2 C3

Conf.1 0 0 1 0 1 0 0 1
Conf.2 1 0 0 1 0 1 0 0
Conf.3 0 0 1 0 1 1 0 0
Conf.4 1 0 0 0 1 0 1 0
Conf.5 0 1 0 0 1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

This matrix is used to determine weights for use in the

optimisation. The node weight of a mode is the number of

times that mode appears in the possible configurations. It is

the columnar sum of corresponding modes from the matrix.

For mode A1 in the example, the node weight is 2 and for B2,

it is 4. The edge weight, Wij between any two modes i and j
is the number of times these modes occur concurrently in the

possible configurations. For modes A1,B1, the edge weight is

1 and for B2,C3, it is 2.

Once the weights are calculated, a modified hierarchical

clustering algorithm [13] with agglomerative strategy is used

for partitioning. The metric used for clustering is the edge

weight, Wij . The agglomerative strategy is a bottom-up clus-

tering method, which iterates by adding new edges between

the nodes in a network. Here, the nodes are the different modes

present in the system. Initially all nodes are disconnected. Now

the algorithm checks for complete sub-graphs in the network.

A complete sub-graph is a sub-graph, where every pair of

distinct vertices is connected by a unique edge. Since initially

none of the nodes are connected, each node can be considered

as a sub-graph with number of edges, k = 0.

The algorithm iterates and in each iteration, it links the two

nodes with the highest edge weight. The rationale for this

is that a larger edge weight indicates that two modes occur

concurrently more frequently for the given configurations, and

hence these modes should be grouped in the same region.

Once two nodes are connected, the algorithm checks for new

complete sub-graphs. This is shown in Fig. 5(a). The edge

value between A3 and B2 is 2, which is the highest. In this

case A3 and B2 are linked together. A search for new complete

sub-graphs finds {A3,B2} with number of edges, k = 1.

The sub-graphs found in each iteration are called base parti-
tions. Base partitions represent the set of mode clusters which

can be used to determine the final partitioning. The frequency

of occurrence of a base partition in the configurations is

represented by a term called frequency weight. For sub-graphs

with k = 0, frequency weight is equal to the node weight and

for sub-graphs with k=1, the frequency weight is equal to the

edge weight. For sub-graphs with a higher number of edges,

the frequency weight is the smallest edge weight present in the

sub-graph. For example, in Fig. 5(b), the frequency weight of

sub-graph {A3,B2,C3} is 1, which is the edge weight between

A3 and C3. The algorithm iterates until all the possible links

are added to the graph. The final sub-graphs detected will

be the full configurations, with frequency weight 1. The base
partitions for the example design are listed in Table I

Once base partitions are generated, a covering algorithm is

used to select those used for partitioning. For this purpose,

the base partitions are arranged in a list in ascending order

of the number of modes included. As the number of modes

in a region increases, the frequency of reconfiguring that

region increases, since modifying even a single mode in the

region requires the complete reconfiguration of the whole

region. Since our objective is to minimise reconfiguration time,

��

��

��

��

��

��

��

��

�

�

�

�

�

�

�

�

��

��

��

��

��

��

��

��

�

�

�

�

�

�

�

�

� � �

�

	
� 	��

Fig. 5. (a) a sub-graph with k = 1. (b) a sub-graph with k = 3.

176

TABLE I
BASE PARTITIONS WITH THEIR FREQUENCY WEIGHT.

Base Part’n Freq wt Base Part’n Freq wt

{A2} 1 {A1, C2} 1
{C2} 1 {A1, B1} 1
{B1} 1 {B1, C1} 1
{A1} 2 {A2, C3} 1
{C1} 2 {A3, C1} 1
{C3} 2 {A3, C3} 1
{A3} 2 {B2, C3} 2
{B2} 4 {A3, B2} 2

{A1, B2} 1 {A3, B2, C3} 1
{B2, C1} 1 {A1, B1, C1} 1
{A1, C1} 1 {A3, B2, C1} 1
{B2, C2} 1 {A1, B2, C2} 1
{A2, B2} 1 {A2, B2, C3} 1

regions are prioritised based on the number of modes. If two

base partitions have the same number of modes, they are

arranged in ascending order of frequency weight. Subsequent

steps of the algorithm show that this prioritisation keeps

the high frequency base partitions as candidates when the

algorithm iterates. Base partitions with the same frequency

weight are arranged in ascending order of their area.

Now base partitions are selected from the list in sequence

order and compared with the connectivity matrix. For each

configuration, i.e. for each row in the connectivity matrix, the

corresponding modes present in the selected base partition are

set to zero. For example, the first base partition selected from

the list is {A2}. For the fifth configuration, A2 is active. The

corresponding element A2 is set to zero and the fifth row of

the connectivity matrix becomes

[0 0 0 0 1 0 0 1]

Subsequently, base partitions {C2}, {B1} etc. are used to

cover more configurations. Base partitions are selected and

compared from the list until all elements in the matrix become

zero. If a base partition does not cover any new mode, it is

not considered as a candidate. The set of base partitions used

to cover all configurations becomes a candidate partition set.
In other words, a candidate partition set is a set of base parti-
tions, whose modes can cover all the possible configurations.

For the example design, the first candidate partition set is

{{A2}, {B1}, {C2}, {A1}, {C1}, {C3}, {A3}, and{B2}}. A

closer examination shows that these are actually all the modes

present in the design.

As the next step, the tool finds the compatible set of

partitions for each base partition from the candidate partition
set. Two partitions are compatible, if the modes present in

them do not co-occur in any of the configurations. For example

{A1} and {A2} are compatible partitions since they do not

co-exist in any of the possible configurations, while {A1}
and {B1} are not compatible, since there is a configuration

S → A1 → B1 → C1. This step is necessary to make sure that

all configuration transitions are possible. If two base partitions

required for a single configuration are allocated to the same

region, that configuration cannot be implemented since at a

given instance, only one base partition will be active in a

configurable region.

Region allocation starts by allocating each element of the

candidate partition set to a separate region, since this is

equivalent to the static implementation which requires min-

imum reconfiguration time. The total resource requirement

and reconfiguration time for this partitioning is calculated.

To find a new solution, two compatible base partitions are

assigned to the same region. The cost function for assigning

two base partitions to a single region is calculated in terms of

the total number of frames being reconfigured considering all

the configuration transitions. When two base partitions with

area P1 and P2 (in terms of frames) are assigned to the same

region r, the area of the region is calculated as,

Pr = max(P1, P2) (2)

The area of the region will be the area of the largest base
partition assigned to it. To find the exact number of frames

present in the region, the region is considered in terms of

CLB, DSP, and BlockRAM tiles. Depending upon the number

of resources present in each tile as described in section IV-B,

the number of tiles required for each resource type for region

r is calculated as.

Rrclb = �max(P1clb , P2clb)/20�, (3)

where Rrclb is the total number of CLB tiles required.

Rrdsp = �max(P1dsp , P2dsp)/8�, (4)

where Rrdsp is the total number of DSP tiles required.

Rrbr = �max(P1br , P2br)/4�, (5)

where Rrbr is the total number of BlockRAM tiles required.

If the total resource requirement of the partition for each

resource type is less than or equal to the resources available

in the FPGA, the reconfiguration time is calculated.

The total number of frames required for the new region is

calculated as

Pr =
∑
t

Wt ∗Rrt (6)

where t is the tile type, t ε (CLBs, DSP blocks, BlockRAMs),

Wclb = 36, Wdsp = 28, Wbr = 30.

System performance can be measured in terms of total

reconfiguration time and worst-case reconfiguration time. Total

reconfiguration time gives a measure of overall system perfor-

mance, and is a useful proxy when we do not know the specific

configuration transitions up front, as is the case for adaptive

systems. Total reconfiguration time is measured as the sum

of all possible configuration transitions, i.e. by considering

transitions from all configurations to all other configurations. If

some statistical information about the probabilities of different

configurations occurring is known, this could be factored into

the measure.

In some applications, such as real time systems and safety

critical systems, the system cannot tolerate reconfiguration

time beyond a certain limit. Here it is important that no

177

��������
����
	���
�
���

��
���
�
����
����
	���
�
��

�����

��������
�������
���	�

�
��
���	��
��
�

	���
�
���

���
��
���
	���
�
���

��
��
���
������
��
�
��

�

���	���
	���
�
���

��������

��

�
�
��

���

����
����

	���
�
��

	���
�
��

 ��

��

 ��

Fig. 6. Flow chart for the proposed algorithm.

configuration transitions take longer than this stipulated time.

Worst case reconfiguration time is a useful measure in this

situation. It is the largest configuration transition time among

all the possible configuration transitions.

Mathematically, the total reconfiguration time is given by

ttotal =
c−1∑
i=1

c∑
j=i+1

tconi,j j > i (7)

where, c is the total number of configurations, and tconi,j is

the time required to change the system configuration from i
to j, and is calculated as

tconi,j =

N∑
r=1

di,j × tconr (8)

Where di,j is a decision variable which is equal to 1 if region

r contains different base partitions in configuration i and

configuration j. tconr is the time to configure region r and

N is the total number of regions.

The configuration time for a region is proportional to the area

of the region.

tconr ∝ Pr (9)

Hence total reconfiguration time in terms of frames is:

ttotal =
c−1∑
i=1

c∑
j=i+1

N∑
r=1

di,j ×
∑
t

Wt ∗Rrt (10)

t is the tile type, t ε (CLBs, DSP blocks, BlockRAMs),

The worst case reconfiguration time is calculated as

tworst = max(tconi,j) (11)

If the total reconfiguration time for the partition scheme

is less than the present lowest time, the scheme is stored as

the present best partition scheme. Once the total number of

frames is calculated, base partitions assigned to the region

are removed from the list and the new region is added to

the list as a new base partition and compatible partitions are

recalculated.

The algorithm iterates by assigning two new compatible

partitions to a region. If all possible compatible base partition
assignments are done, the algorithm restarts from the initial

candidate partition set, and assigns two compatible base
partitions to the same region, which are distinct from those

used to begin the previous iterations. Once all combinations

of compatible base partitions are considered for initial assign-

ment, a new set of base partitions are selected from the list

to generate a new candidate partition set. For this purpose,

the top most base partition is removed from the list, and the

covering algorithm is re-applied. Due to the arrangement of

the base partitions, the one with the lowest frequency weight

is removed from the list. For the example design, after the first

set of iterations, {A2} is removed from the list and {A2, B2}
is added to the new candidate partition set.

The algorithm iterates until no more candidate partition
sets are possible. When the algorithm terminates, it selects

the scheme with the lowest reconfiguration time as the final

partitioning. Considering the valid configuration information

in the partitioning step makes it a tractable problem, whereas

if all possible combinations of modes were considered, the

problem would become NP-hard and we would only be able

to find sub-optimal solutions. One key difference in our new

approach is that we focus on making use of all available

resources in the target FPGA. Rather than only minimising

resource usage, likely at a cost of increasing reconfiguration

time, this approach will optimise reconfiguration time, using

all the resources available on the FPGA specified, and hence,

may implement multiple modes at the same time.

D. Special Conditions

One scenario we have worked to include in this formulation

is where the system does not consist of a number of distinct

design modules that have different modes. For example con-

sider the design example used in [7]. The system has only two

configurations.

1) CAN controller (C) → FIR filter(F)

2) Ethernet controller (E) → Floating point unit (P) →
CRC (R)

Here, there are no definite mode relations. In our algorithm

this is dealt with by specifying each reconfigurable module

with a single mode. While specifying the configurations, the

modules which are not present in a configuration are marked

as having mode 0. For this example, the configurations are

specified in our algorithm as

178

1) C1 → F1 → E0 → P0 → R0

2) E1 → P1 → R1 → C0 → F0

The algorithm treats mode 0 as the absence of the correspond-

ing module, and no column is allocated for zero modes in

the connectivity matrix. This allows us to mix multi-mode

modules and one-off modules.

V. CASE STUDY

The proposed algorithm was implemented using the Python

programming language [14].

For a realistic evaluation, we apply our region allocation

approach to an example design implemented on a Virtex-5

FX70T FPGA. The design is a wireless video receiver chain

with blocks used from existing designs and vendor IP. It has

one static region and five reconfigurable modules. The system

can operate in various modes, and adapts to channel conditions

and user requirements at runtime. Modules communicate with

each other using a simple streaming bus interface, which is

registered to ensure timing is not affected by partitioning. The

resource utilisation for each reconfigurable module and mode

is shown in Table II. TABLE II
RESOURCE UTILISATION FOR RECONFIGURABLE MODULES.

Module Mode Slices BR DSP

Matched Filt (F)
1. Filter1 818 0 28
2. Filter2 500 0 34

Recovery (R)

1. Fine 318 1 13
2. Coarse1 195 1 5
3. Coarse2 123 0 8
4. None 0 0 0

Demodulator (M)
1. BPSK 50 0 2
2. QPSK 97 0 4

Decoder (D)
1. Viterbi 630 2 0
2. Turbo 748 15 4
3. DPC 234 2 0

Decoder (V)
1. MPEG4 4700 40 65
2. MPEG2 4558 16 32
3. JPEG 2780 6 9

The different configurations used by the system are the fol-

lowing:

S → F1 → R3 → M1 → D1 → V1

S → F1 → R3 → M1 → D1 → V2

S → F1 → R3 → M1 → D1 → V3

S → F2 → R1 → M2 → D3 → V1

S → F2 → R2 → M1 → D1 → V1

S → F2 → R2 → M1 → D1 → V2

S → F2 → R2 → M1 → D1 → V3

S → F1 → R2 → M1 → D2 → V2

The total FPGA resources available for the implementation

of the PR design has been set to 6800 CLBs, 50 BRAMs, and

150 DSP slices in this example, saving the rest of the FPGA

for the static region. Implementing the design completely

statically, using multiplexers to select between modes, requires

15053 CLBs, 68 BRAMs, and 202 DSP slices, which exceeds

the capacity of the target device. Implementing each module

in a separate region requires 6580 CLBs, 48 BRAMs and

144 DSP slices. Although this scheme can fit in the FPGA,

the total reconfiguration time is 244872 frames. The proposed

algorithm finds a solution that requires 6600 CLBs 48 BRAMs

and 140 DSP slices, with a total reconfiguration time of

235266 frames, 4% less than the one module per region

implementation. The low percentage improvement is due to

the large size of the decoder module modes compared to

other modules and also since in the final solution all decoder

modes are assigned to the same region. The final scheme

determined by the algorithm is as shown in Table III. The

resource requirements for each scheme are shown in Table IV.

TABLE III
PARTITIONS DETERMINED BY ALGORITHM.

Region Base Partitions
PRR1 M2, {M1, D2}
PRR2 D3, R2, R3

PRR3 D1, R1

PRR4 F1, F2

PRR5 V1, V2, V3

TABLE IV
PROPERTIES FOR DIFFERENT PARTITIONING SCHEMES.

Scheme CLBs BRAMs DSPs Total Recon. time
Static 15053 68 202 0
Modular 6580 48 144 244872
Proposed 6600 48 140 235266

Now consider the system configurations are changed to:

S → F1 → R3 → M1 → D1 → V1

S → F1 → R2 → M1 → D1 → V3

S → F2 → R3 → M1 → D1 → V3

S → F1 → R1 → M2 → D3 → V1

S → F2 → R1 → M2 → D3 → V2

The solution found by the proposed algorithm is given in

Table V. This scheme requires 6500 CLBs, 48 BRAMs, and

144 DSP slices, with a total reconfiguration time of 92120

frames. This is 6% less that the one module per region scheme.

From the explored schemes, the scheme with the smallest

reconfiguration time that can fit in the FPGA is selected

as the final solution. These results show that for optimal

performance, partitioning needs to be a function of the system

configurations and resource availability.

TABLE V
PARTITIONS DETERMINED BY ALGORITHM FOR MODIFIED

CONFIGURATIONS.

Region Base Partitions
static M1, D2
PRR1 D1, R1
PRR2 R2, R3,M2, D3
PRR3 F1, F2

PRR4 V1, V2, V3

For a more thorough investigation of the proposed algo-

rithm, we require more PR designs. Unfortunately, there are

very few such designs in the literature, and many of those

available are very simple. Hence, we use synthetic designs

for a more thorough evaluation. We generated 1000 synthetic

179

0

1

2

3

4

5

6

7
·106

L
X
2
0
T

L
X
3
0

F
X
3
0
T

S
X
3
5
T

F
X
5
0
T

S
X
7
0
T

F
X
9
5
T

F
X
1
3
0
T

F
X
2
0
0
T

Designs

T
o
ta
l
R
ec
o
n
fi
g
T
im

e
(f
ra
m
es
)

Proposed

1 Module/Region

Single region

Fig. 7. Total reconfiguration time for proposed method vs one module per
region implementation and single PR region method sorted according to target
FPGA size.

designs, with an equal number of logic-intensive, memory-

intensive, DSP-intensive and DSP-and-memory-intensive cir-

cuits. Each design is also augmented with a static region

requiring 90 CLBs and 8 BRAMs, based on our custom

ICAP controller and associated logic [15]. Designs are gen-

erated containing 2-6 modules, each with a number of modes

varying from 2 to 4.Each mode can use 25 to 4000 CLBs,

and the number of other resources is chosen from a range

determined by the number of CLBs and the type of the circuit

(logic-intensive, memory-intensive etc.). Configurations are

randomly generated, until every mode present in the design

is utilised at least once. This results in a wide range of design

types, that we expect to give us a better idea of how well the

proposed algorithm performs.

For each design, the minimum resources required for im-

plementation are determined by considering a design using

a single PR region. This is used to determine the smallest

FPGA that can accommodate the design. The FPGAs used

are from the Xilinx Virtex-5 family [16]. If at the end of

an iteration of the algorithm, no partitioning scheme other

than a single region is feasible, we select the next largest

FPGA and the design is partitioned again. The program takes

between a few seconds and one minute to determine the best

solution for a design depending upon its size and the number

of configurations.

201 of the 1000 designs could not be alternatively arranged

on the smallest FPGA, so they were re-iterated using larger

FPGAs. In 13 cases, the proposed algorithm was able to fit the

design in a smaller FPGA than is required for the one module

per region scheme.

A comparison of total reconfiguration time for the one-

module-per-region scheme, a single-region scheme, and the

scheme determined by the proposed algorithm is shown in

Fig. 7. The results have been sorted based on the target FPGA.

0

1

2

3

4
·104

L
X
2
0
T

L
X
3
0

F
X
3
0
T

S
X
3
5
T

F
X
5
0
T

S
X
7
0
T

F
X
9
5
T

F
X
1
3
0
T

F
X
2
0
0
T

Designs

W
o
rs
t
R
ec
o
n
fi
g
T
im

e
(f
ra
m
es
)

Proposed

Single region

1 Module/Region

Fig. 8. Worst reconfiguration time for proposed method vs one module per
region implementation and single PR region method sorted sorted according
to target FPGA size.

The total reconfiguration time for the single-region scheme is

high since for each reconfiguration, the complete PR region

needs to be reconfigured. In most of the cases, the proposed

algorithm finds a better solution than the one-module-per-

region scheme.

A comparison for worst-case reconfiguration time is shown

in Fig. 8. In almost all cases, the proposed algorithm has a

lower worst-case reconfiguration time compared to the one-

module-per-region scheme. The plot shows that in several sce-

narios, the worst-case reconfiguration time for a single-region

scheme is lower than the one-module-per-region scheme and

the solution of the proposed algorithm. This occurs because

the single-region implementation scheme has the minimum

resource requirement when all modes are implemented in PR

regions (i.e. no modes are moved to the static region). For this

scheme, the worst-case reconfiguration time is independent

of configuration transitions, since each transition requires the

entire region to be reconfigured and hence it is the same

for all transitions. Meanwhile the worst-case for the other

schemes will typically be where all modules switch mode, and

hence, the increased sum area of PR regions causes this to be

longer. But the impact of this scheme on the overall system

performance is evident from Fig. 7, since for all configuration

transitions the whole region needs to be reconfigured.

Profiles of the percentage improvement of the proposed

algorithm compared to the one-module-per-region and single-

region schemes are shown in Fig. 9. The proposed scheme

performs better than the one-module-per-region scheme in

terms of total reconfiguration time in 73% of cases and

performs better than the single-region scheme in all cases.

In terms of worst-case reconfiguration time, the proposed

algorithm finds a better solution than the one-module-per-

region scheme in 70% of cases. For 3 designs, the output of

the algorithm performs worse. Compared to the single-region

180

scheme, the proposed method improves or matches worst-

case reconfiguration time in 87.5% of cases. In the remaining

12.5% of cases, the total reconfiguration time, which is what

we optimise for, is very high and hence, this is not relevant.

−10 0 10 20 30 40 50 60 70 80 90100
0

100

200

300

Percentage change (%)

N
u
m
b
er

of
D
es
ig
n
s

(a)

−10 0 10 20 30 40 50 60 70 80 90100
0

100

200

300

Percentage change (%)

(b)

−10 0 10 20 30 40 50 60 70 80 90100
0

100

200

300

Percentage change (%)

N
u
m
b
er

of
D
es
ig
n
s

(c)

−10 0 10 20 30 40 50 60 70 80 90100
0

100

200

300

Percentage change (%)

(d)

Fig. 9. Percentage changes for total reconfiguration time found by the
proposed algorithm compared to (a) one module per region and (b) single
region schemes and for worst reconfiguration time compared to (c) one module
per region and (d) single region schemes.

We can see that the proposed algorithm offers tangible

improvements over both traditional partitioning approaches,

especially in cases where it determines that modules can be

moved to the static region. At the same time, it is clear that

using general measures of total reconfiguration time and worst-

case reconfiguration time may not tell the whole story. A

more detailed analysis would require knowledge of the specific

transition probabilities; something that we plan to consider in

future work.

VI. CONCLUSION AND FUTURE WORK

In this paper we have proposed a new technique for automat-

ing the partitioning of designs for partial reconfiguration. A

hierarchical graph clustering approach is used to determine

an optimal allocation based on the set of valid configura-

tions, optimising for reconfiguration time. The only input the

designer needs to provide is the design description and the

target device. The approach is the first to make use of all

available resources in the given device to bring reconfiguration

time down to the minimum, by moving modes into the static

region when possible, in addition to intelligent partitioning.

It can also accommodate designs that contain optional single-

mode modules. Through our ongoing research, we aim to raise

the level of abstraction and automation in design for partial

reconfiguration, so that adaptive systems design using PR can

become easier.

We plan to integrate our floorplanning algorithm [11] in

future work. Even though we find a partitioning scheme can

theoretically fit into an FPGA based on resource availability,

at the time of floorplanning we may find that other issues such

as device layout, the presence of hard-macros, and PRR shape

constraints prevent this from being feasible. Feedback from the

floorplanner will be added to the partitioning tool to overcome

this when a selected scheme cannot be floorplanned.

We also hope to formalise an approach for describing

an adaptive system at a high level of abstraction, including

both the composition and adaptation behaviour, extending the

approach in [17].

Combining a formalised adaptive system description model

with automated partitioning and floorplanning will enable

adaptive system designers to leverage PR without the need

for expert knowledge.

REFERENCES

[1] J. Lotze, S. A. Fahmy, J. Noguera, B. Ozgül, and L. Doyle, “Spectrum
sensing on LTE femtocells for GSM spectrum re-farming using Xilinx
FPGAs,” in Proceedings of the Software-Defined Radio Forum Technical
Conference (SDR Forum), 2009.

[2] C. Conger, R. Hymel, M. Rewak, A. D. George, and H. Lam, “FPGA
design framework for dynamic partial reconfiguration,” in Proceedings
of Reconfigurable Architectures Workshop (RAW), 2008.

[3] S. Ganesan and R. Vemuri, “An integrated temporal partioning and
partial reconfiguration technique for design latency improvement,” in
Proceedings of Design, Automation and Test in Europe (DATE), 2000.

[4] Z. Li and S. Hauck, “Configuration prefetching techniques for partial
reconfigurable coprocessor with relocation and defragmentation,” in
Proceedings of ACM/SIGDA tenth international Symposium on Field
Programmable Gate Arrays (FPGA), 2002.

[5] V. Rana, S. Murali, D. Atienza, M. D. Santambrogio, L. Benini, and
D. Sciuto, “Minimization of the reconfiguration latency for the mapping
of applications on fpga-based systems,” in Proceedings of IEEE/ACM
International Conference on Hardware/Software Codesign and Systtem
Synthesis (CODES+ISSS), 2009.

[6] A. Jara-Berrocal and A. Gordon-Ross, “Runtime temporal partitioning
assembly to reduce FPGA reconfiguration time,” in Proceedings of
the International Conference on Reconfigurable Computing and FPGAs
(ReConFig), 2009.

[7] A. Montone, M. D. Santambrogio, D. Sciuto, and S. O. Memik,
“Placement and floorplanning in dynamically reconfigurable FPGAs,”
ACM Transactions on Reconfigurable Technology and Systems (TRETS),
vol. 3, no. 4, pp. 24:1–24:34, November 2010.

[8] K. Vipin and S. A. Fahmy, “Efficient region allocation for adaptive
partial reconfiguration,” in Proceedings of the International Conference
on Field Programmable Technology (FPT), 2011.

[9] WP-01137: Increasing Design Functionality with Partial and Dynamic
Reconfiguration in 28-nm FPGAs, Altera, 2010.

[10] M. Bourgeault. (2011, June) Altera’s partial reconfiguration flow. Altera.
[11] K. Vipin and S. A. Fahmy, “Architecture-aware reconfiguration-centric

floorplanning for partial reconfiguration,” in Reconfigurable Computing:
Architectures, Tools and Applications – Proc. Int. Symposium on Applied
Reconfigurable Computing (ARC), 2012, pp. 13–25.

[12] UG191: Virtex-5 FPGA Configuration User Guide, Xilinx Inc., 2010.
[13] M. Srinivas and C. K. Mohan, “Efficient clustering approach using

incremental and hierarchical clustering methods,” in Proceedings of
International Joint Conference on Neural Networks (IJCNN), 2010.

[14] Python programming language - official website. [Online]. Available:
http://www.python.org/

[15] K. Vipin and S. A. Fahmy, “A high speed open source controller
for FPGA partial reconfiguration,” in Proceedings of the International
Conference on Field Programmable Technology (FPT), 2012.

[16] DS100: Virtex-5 Family Overview, Xilinx Inc., Feb. 2009.
[17] J. Lotze, S. Fahmy, J. Noguera, and L. Doyle, “A model-based approach

to cognitive radio design,” IEEE Journal on Selected Areas in Commu-
nications (JSAC), vol. 29, no. 2, pp. 455–468, Feb. 2011.

181

