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Abstract—We can exploit the standardization of communica-
tion abstractions provided by modern high-level synthesis tools
like Vivado HLS, Bluespec and SCORE to provide stable system
interfaces between the host and PCIe-based FPGA accelerator
platforms. At a high level, our FPGA driver attempts to provide
CUDA-like driver behavior, and more, to FPGA programmers.
On the FPGA fabric, we develop an AXI-compliant, lightweight
interface switch coupled to multiple physical interfaces (PCIe,
Ethernet, DRAM) to provide programmable, portable routing
capability between the host and user logic on the FPGA. On
the host, we adapt the RIFFA 1.0 driver to provide enhanced
communication APIs along with bitstream configuration capa-
bility allowing low-latency, high-throughput communication and
safe, reliable programming of user logic on the FPGA. Our
driver only consumes 21% BRAMs and 14% logic overhead on
a Xilinx ML605 platform or 9% BRAMs and 8% logic overhead
on a Xilinx V707 board. We are able to sustain DMA transfer
throughput (to DRAM) of 1.47GB/s (74% peak) of the PCIe
(x4 Gen2) bandwidth, 120.2MB/s (96%) of the Ethernet (1G)
bandwidth and 5.93GB/s (92.5%) of DRAM bandwidth.

I. INTRODUCTION

FPGAs are used in both embedded platforms and spe-
cialized, stand-alone, bespoke computing systems (e.g. PCI
Pamette [1], Splash [2], BEE2 [3]). The ability to design
custom interfaces allows data to be streamed to and from
FPGA logic pipelines at very high throughput. We have seen
FPGAs make their way into commodity computing platforms
as first-class computing devices in tandem with CPUs. Some
platforms allow FPGAs to be integrated over a PCIe interface
(e.g. Xilinx ML605, VC707, Altera DE4, Maxeler Max3),
some over Ethernet (e.g. Maxeler 10G, NetFPGA), and others
using a CPU-socket FSB interface (e.g. Convey HC, Nallatech
ACP). There have also been recent attempts at creating open-
source, standards-inspired interfaces (e.g. RIFFA, OpenCPI,
SIRC) which further ease design burden. We investigate the
design and engineering of an FPGA driver that (1) is portable
across multiple physical interfaces, and (2) provides simple
plug-and-play composition with high-level synthesis tools.

In this regard, the stable CUDA driver API is an example
of effective driver interface design. It supports a variety of
CUDA-capable GPU devices in a high-performance, portable
manner. It provides a limited set of interaction primitives
that are precise, clear and behave consistently across different
GPU devices. In the context of an FPGA driver, we have
a harder challenge. We must design both the hardware and
software components of the driver. The idea of considering

device drivers as a hardware-software co-design problem has
been previously explored [4]. We must worry about diversely-
varying FPGA boards, target multiple physical interfaces,
provide an interface-agnostic view of communication, have
minimal impact on user logic, and consider the impact of
device reprogramming on system stability. Our FPGA system-
level driver attempts to address some key challenges:
• Unifying Multiple Physical Interfaces Existing open-

source FPGA drivers typically support a single interface
(e.g. RIFFA supports PCIe, SIRC supports Ethernet). We
abstract different physical interfaces (PCIe, DRAM, Eth-
ernet) into register-level (AXI-Lite), and handshake-based
streaming (AXI-stream) interfaces for integration with user
logic generated by high-level synthesis tools. This abstrac-
tion simplifies composition with user logic.
• High-Performance Connectivity We develop a pro-

grammable AXI-compliant switch to allow user logic to
send/receive data over multiple physical interfaces. This
allow sustained, high-throughput overlapped data transfers
to user logic (for some combinations).
• Driver Safety Safety and security guarantees have tra-

ditionally been a central requirement of device drivers.
Unlike some existing solutions, our driver allows the host
to reprogram the FPGA without requiring a system reboot
or losing PCIe link state. Furthermore, we also provide
memory safety on FPGA DRAM in our memory allocation
logic and ensure safe concurrent AXI switch transactions.
• Communication Abstractions Most existing FPGA

drivers support raw PCIe (DMA and PIO) transactions
that must be manually adapted to support user logic com-
munication protocols. Some drivers provide bindings to
languages like C, C++ or Python which still require low-
level management of FPGA logic. Our driver provides direct
bindings into HLS test-benches and build environments,
enabling a direct, seamless mapping to hardware generated
by HLS tools like Vivado HLS, Bluespec, and SCORE. The
programmer writes the HLS function and associated test-
bench and can switch to FPGA execution when needed.
• System-Level Environment Monitoring Apart from com-

munication and reconfiguration support, a true system-level
integration is possible if we can monitor, diagnose, and
potentially correct environmental operating conditions. We
provide support for reading power, voltage, and temperature
information from the FPGA.



TABLE I: Survey of existing FPGA system-level drivers.
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II. SURVEY

Device drivers enable interactions with peripherals like par-
allel/serial ports, modems, storage, and network interfaces, in
a safe, fair manner. Many interfaces in modern systems require
specialized driver software in order to take full advantage of
their capabilities and achieve maximum performance, e.g. 10-
100G network interfaces, SCSI disks, and PCIe-connected
accelerators like GPU and FPGA cards. Unfortunately, using
FPGAs within host computers has remained challenging due
to a plethora of interfaces, diverse user requirements and gen-
eral apathy from FPGA vendors. Industrial vendors including
Maxeler, BEECube, Bluespec, Nallatech, Solarflare, Mercury
and others have long provided proprietary interfaces for their
own hardware systems. Furthermore, recent engineering effort
in academia has attempted to mitigate this system integration
issue, as shown in Table I. With FPGA systems, we have
the unique opportunity to customize both the software-side
(host) and hardware-side (device) interface to enable optimized
interaction.
• SIRC [5], provides a software API and requisite hardware

interface for communicating between a Windows host PC
and an FPGA board. However, it only supports an Ethernet
interface thereby limiting achievable bandwidth.
• RIFFA [6] provides a similar interface over PCIe, but PC

to FPGA performance is poor due to the use of a PLB to
PCIe bridge. RIFFA 2.0 [7] addresses performance issues,
but does not support FPGA DRAM access.
• Virtual RC [11] proposes a virtual system layer (software

and hardware) to allow designers to target the same design
to different boards with minimal memory transfer overhead
for large transfers. Only relative overheads are reported.
• The Liquid Metal IP Bridge [12] supports multiple boards.

However, it only supports PCIe on some, and achieves a
maximum throughput of under 1GB/s, due to the abstraction
layer it uses.
• The OpenCPI [8] framework is aimed at supporting in-

teroperability across a range of implementation platforms,
including multi-core CPUs, FPGAs and GPUs and software
abstractions including OpenCL, and CORBA. Hence, the

framework may be unwieldy and tedious for those seeking
to use FPGAs in isolation for a specific design.
The device driver proposed in this paper addresses the

weaknesses of previous work, by facilitating interfaces to
PCIe, Ethernet, and DRAM, all at high throughput, in addition
to supporting multiple access modes to suit a wider range
of applications, and bindings to high level synthesis tools to
further ease integration and use.

III. INTERFACE DESIGN

In this section, we describe the design of our system-level
interface and discuss usage scenarios for the programmer
through simple examples.

A. Programmer-Level View
System developers that use GPUs for offloading complex

compute tasks will typically identify functions to be imple-
mented in kernels. These kernels run on the GPU while the
control program runs on the host. A simple example of this
for the NVIDIA CUDA programming environment is shown in
Listing 1. In this example, the accelerator kernel is compiled
to run on the GPU and called in a wrapper C/C++ program
running on the host. The host program is also responsible
for data-transfer and invocation of the GPU function with
the correct parameters. This CUDA design flow is similar to
the strategy used by high-level synthesis users who separate
their computation into hardware and software components.
The hardware blocks will be implemented on the FPGA while
interacting with the software programs or test-benches running
on the host CPU. Listing 2 shows how we invoke the driver
functions that need to be called within a host program. This
mimics CUDA host program behavior (host responsible for
data handling and invocation) and offers a simpler path to
integrating with existing HLS testing flows.

The entire FPGA design flow using our driver (including
hardware generation) is shown in Fig. 1. The bitstream gener-
ation process has been suitably adapted to be compatible with
our Verilog wrapper interfaces.

B. HLS Communication Abstractions
Modern high-level synthesis tools provide a fresh perspec-

tive on compiling high-level descriptions of computation into
low-level hardware implementations. This has been made
possible by innovations in scheduling and binding within
HLS compilers. A key (somewhat overlooked) aspect of this
resurgence is the standardization of communication interfaces
that move beyond simple busses.

Advanced Microcontroller Bus Architecture - Advanced
eXtensible Interface-4 (AMBA AXI-4) is an open standard
ARM-developed protocol for high-speed on-chip data com-
munication. Xilinx has adopted the AXI protocol for intel-
lectual property (IP) core interfaces. AXI4-Stream uses a
simple handshaking based protocol between a master and slave
device in a point-to-point fashion, transferring data on every
clock cycle. AXI4-Stream uses simple valid (TVALID), back-
pressure (TREADY) handshaking to enable high speed data
transfers between AXI cores.



1 #include "cuda.h";
2
3 // GPU kernel
4 __global__ void foo(int* a, int* b) {
5 b[threadId.x] = a[threadId.x]+1;
6 }
7
8 // GPU host code runs on CPU
9 int main() {

10 . . .
11 // allocate gpu inputs
12 cudaMalloc(device_a, size_a, . . .);
13 cudaMalloc(device_b, size_b, . . .);
14
15 // copy inputs
16 cudaMemcpy(device_a, host_a, size_a, . . .);
17
18 // call GPU kernel
19 foo<<grid, block>>(device_a, device_b);
20
21 // copy outputs
22 cudaMemcpy(host_b, device_b, size_b, . . .);
23
24 // free gpu data
25 cudaFree(device_a, . . .);
26 cudaFree(device_b, . . .);
27 . . .
28 }

Listing 1: CUDA kernel example.

1 #include "fpga.h";
2
3 // FPGA Vivado HLS kernel
4 void foo(int* a, int* b) {
5 *b = *a+1;
6 }
7
8 // FPGA Host code runs on CPU
9 int main() {

10 . . .
11 // allocate fpga dram memory
12 device_a = fpga_malloc(size_a);
13 device_b = fpga_malloc(size_b);
14
15 // call FPGA logic
16 load_bitstream("foo.bit",. . .);
17
18 // copy inputs
19 fpga_transfer_data(HOST, USER1,
20 device_a, host_a, size_a, . . .);
21
22 // copy outputs
23 fpga_transfer_data(USER1, HOST,
24 device_b, host_b, size_b, . . .);
25
26 // free fpga dram memory
27 fpga_free(device_a);
28 fpga_free(device_b);
29 . . .
30 }

Listing 2: FPGA kernel example.

We now summarize the interface styles generated by Vivado
HLS, Bluespec and SCORE:
• Vivado HLS Vivado HLS is a high-level synthesis tool

based on AutoPilot that converts a restricted subset of
C/C++ code to Xilinx FPGA devices and uses the AXI
standard for logic interfaces. Our driver directly supports
the AXI-Stream subset of the standard.
• Bluespec Bluespec is a high-level synthesis tool that sup-

ports generation of hardware using a high-level description
of computation in a functional programming language. In
Bluespec, we describe computation using rules and meth-
ods. Method calls are compiled to a hardware interface using
an enable-ready handshake. With minor modifications to
wrapper Verilog (AND masking the enable with the ready),
the generated hardware can seamlessly plug into our driver
interface.
• SCORE Computations described as dataflow operations

on streams can be expressed using the SCORE high-level
framework [13]. The Verilog generated from SCORE is
separated into FIFO-level handshakes on each stream. These
handshakes are directly compatible with our driver interface
with no modification.

C. Driver Architecture

At a minimum, FPGA drivers must provide the programmer
with the ability to load an application bitstream and support
data transfers between the FPGA and host. The important
engineering decision (and challenge) to consider is how to
partition driver functionality between the hardware and soft-
ware components of our FPGA driver. Certain operations, such
as memory management, and performance optimization of
Host→FPGA transfers (e.g. double-buffering recipe) are best
handled in software, while others, such as low-level DRAM
access, handshaking, and buffering, are best done in hardware.

HLS
Testbench

HLS
Hardware

HLS
Simulation

HLS
Compile

Vivado Bitstream
Generation

Hardware
Driver

Location
Constraints

In-System
Execution

Software
Driver

Functional
Simulation

Fig. 1: Programming flow.

We show a high-level block diagram of our FPGA driver in
Fig. 2. We now take a deeper look at the organization of our
driver.

1) Software: In our driver, we build upon the software-side
interfaces from RIFFA 1.0 as they provide simple Linux I/O
interfaces to support PIO (programmed IO for simple register
reads/writes) and DMA (direct memory access for transferring
large amounts of data) transfers. RIFFA can only transfer data
over PCIe directly to FPGA logic. We substantially expand on
this driver in many ways:
• We provide several additional communication pathways to

get data to/from the FPGA using the fpga transfer data
API calls. This includes adding paths from PCIe→DRAM
as well as an Ethernet→DRAM path. We provide a simple
interface selection API.
• The driver supports FPGA DRAM memory management.

This provides API calls such as fpga malloc and fpga free



to simplify the task of tracking free unused DRAM space.
This allows us to provide memory safety as we no longer
permit direct physical address access to user logic streams.
• We program the FPGA using the load bitstream and

fpga reboot API call.
• There are separate PIO reads to access system monitor

values such as voltage, current, and temperature (ML605
only for now).
2) Hardware: Our FPGA driver architecture is co-designed

to include hardware and software components that operate in
conjunction to deliver efficient and safe operation, as depicted
in Fig. 2. While we build upon RIFFA for the software compo-
nent of our driver, we have developed the hardware component
of the driver from scratch for maximum performance and
scalability.

• The centerpiece of our hardware driver is the
AXI4-Stream switch that provides circuit-switched,
bidirectional communication between PCIe↔DRAM,
PCIe↔user logic, DRAM↔user logic, and
Ethernet↔DRAM. This is unlike the more common
packet-switched or time-multiplexed flavors already
demonstrated [14] on FPGA overlay architectures. This
switch can be programmed at runtime. The switch
is rich enough to support concurrent, simultaneous
transfers on non-interacting paths. We should note that
time-multiplexing is indeed used internally within the
arbitration logic (not within the switch) when a specific
resource needs to be shared (e.g. DRAM↔User Logic).

• Our PCIe interface uses the FPGA PCIe hard macros.
The interface is shared by 6 channels: 4 for user logic, 1
each for DRAM and PIO. To enhance DRAM throughput,
we use two virtual channels and reordering logic on
the FPGA to allow back-to-back transactions. Channel
management is an example of partitioning of functional-
ity between the FPGA (reordering logic) and the host
(synchronization). We also support non-blocking PCIe
transfers with deferred (coalesced) synchronization.

• The Ethernet interface allows near line-rate processing of
raw Ethernet frames at Gigabit rates. For raw throughput,
OSI layer implementations (TCP/IP, UDP) are mostly
irrelevant, so we provide an AXI-compatible interface
into the switch.

• User logic is accessible via a programmable number of
bidirectional channels (up to 4). Asynchronous FIFOs at
the interface allow the user logic to run at a different
frequency to the rest of the design. User clocking and
reset controls are supported at runtime via higher-level
API calls without requiring the user to deal with low-
level PLLs and resets.

• Seamless DRAM memory support is missing in a few ex-
isting open-source FPGA device drivers (see Section II).
Our driver allows access to the onboard FPGA DRAM
through a multi-port controller and arbiter. The AXI
switch can be configured to saturate 90% of the DRAM
memory bandwidth through simultaneous activation of
multiple channels.
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Fig. 2: System-level block diagram.

• Fast runtime reconfiguration of user logic is possible from
Platform Flash and BPI Flash interfaces without a host
reboot.

D. Usage Scenarios

We highlight four key operating usage scenarios:
• DMA transfers to off-chip DRAM: In this mode, we
mimic the CUDA cudaMemcpy() functionality by stag-
ing the offloaded arrays in the FPGA DRAM from the
host DRAM via DMA transfers. This mode allows high-
throughput transfer of data to a large-capacity off-chip
DRAM that can saturate a large percentage of PCIe band-
width. We operate the transfer in double-buffered fashion
to allow us to overlap FPGA computation with subse-
quent transfers. The interface includes pre-package address
generators for different access patterns such as streams
(sequential), with the ability to support more in the future
(e.g. strided). We show a timing sequence diagram for
performing a PCIe→DRAM data transfer in Fig. 3.
• DMA Transfers to User Logic: This is the key functional-

ity provided by competing FPGA open-source drivers like
RIFFA and SIRC for streaming data transfers directly to
FPGA logic via on-chip BlockRAMs. In this scenario, we
have lower latency access to the FPGA fabric but throughput
is limited by on-chip FPGA buffering capacity. Presently,
we support FIFO-based transfer of data to user logic.
• Register Read/Write Interface: In many cases, it is
important to quickly synchronize small amounts of control
information with the FPGA, e.g. start/stop user logic, adjust
constant parameters, load runtime configuration parameters
for an IP core. For this scenario, we use the PCI pro-
grammed IO (PIO) interface to orchestrate these transfers.
This same interface is used to support other interface setup
operations (e.g. PCIe→DRAM transfer sizes, AXI switch
configuration, system monitor readback).
• Dynamic Reconfiguration of User Application: A key

advantage of using FPGA fabrics in high-performance com-
puting systems is their ability to be reprogrammed for differ-
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Fig. 3: Sequence diagram for PCIe→DRAM transfer.

ent compute-intensive kernels. For FPGA accelerator cards,
a full reprogram has the potential to destabilize the host OS
as well as corrupt the DRAM state on the FPGA board. Our
driver provides safe caching of PCIe configuration across
reconfigurations. This enables us to perform seamless multi-
context switching for highly compute- intensive applica-
tions.

IV. DRIVER ENGINEERING

We now describe our test infrastructure and the experimental
setup used to characterize our driver.

A. Framework Specifications

We use the Xilinx ML605 (XCV6LX240T FPGA) [15]
and VC707 (XC7VX485T FPGA) [16] platforms for our
experiments. We host these boards in an HP Z420 workstation
with an Intel Xeon E5-1650 3.2GHz CPU with 16GB RAM
and an Intel X79 PCIe root complex. The PCIe slot used is
8-lane Gen1, 4-lane Gen2, supporting a maximum data rate
of 2.5 GB/s with a PCIe link overhead of 0.5 GB/s (8b/10b
encoding). We run our experiments in Ubuntu Linux 64-bit
12.04LTS which supports PCIe hot-plug. We use Xilinx ISE
14.4 to compile our driver. For timing measurement, we use
PAPI on the CPU, while on the FPGA, custom timers are used
to obtain accurate cycle counts.

B. First-time bootstrapping

To begin using our device driver for the first time, we require
a somewhat manual bootstrapping phase at system power-up
bitstream load. While this could be achieved in a number of
ways, we choose to program the onboard Platform Flash XL
(ML605) or BPI flash (VC707) and configure the FPGA from

TABLE II: Framework user APIs.

API Call with Brief Description
System Initialization and Programming

load_bitstream(bitfile, dest_id)

Reprogram FPGA through JTAG with bitfile, specifying target device
fpga_reboot(address)

Reprogram by loading a bitstream from the external flash using ICAP
fpga_read_sys_param()

Read system monitor values such as temperature, voltage, current, power

Data transfer

fpga_transfer_data(src, dest, data, len, addr)

Initialize a DMA transfer between src and dest of array data of length
len:

src: HOST, DRAM, USERPCIE1..4, USERDRAM1..4, ETHERNET
dest: HOST, DRAM, USERPCIE1..4, USERDRAM1..4, ETHERNET
addr specifies FPGA DRAM address

fpga_wait_interrupt(channel)

Synchronization function for data transfers. Channel specifies the specific
DMA channel for which synchronization is needed
fpga_reg_wr(addr,data)

Write single 32-bit register in global register set or user logic
fpga_reg_rd(addr)

Reading single 32-bit register in global register set or user logic
fpga_ddr_pio_wr(addr, data)

Indirect write to a single 32-bit DRAM memory location
fpga_ddr_pio_rd(addr)

Indirect read from a single 32-bit DRAM memory location

User configuration

user_soft_reset(polarity)

Issues a soft reset to the user logic with the specified polarity. Different
HLS tools use different reset polarities.
user_set_clk(frequency)

Set the clock frequency to the user logic. (250, 200, 150 and 100 MHz)

flash at each power-up. This allows us to perform the boot-
strapping once, barring firmware upgrades. Additionally, the
kernel driver needs to be compiled and installed. Changes to
permissions on the PCIe configuration parameters are required
to allow userspace execution of FPGA reconfiguration steps.

C. FPGA Reconfiguration

A lingering misconception among a minority of practition-
ers is the need to reboot the PC each time the PCIe-endpoint
on the FPGA card is reconfigured. This can be avoided by
exploiting Linux PCIe hot-plug functionality [17] and restora-
tion of PCIe link parameters after reconfiguration. We save
and restore link state on the host during the load bitstream()
API call. This functionality is also supported in OpenCPI and
LEAP.

D. Driver API and Address Map

In the simple example shown in Listing 2, we highlight
the few API calls most likely used by the end-user. We now
provide a comprehensive list of API functions calls in Table II.
Three types of API support are provided: (1) Data transfer, (2)
Reconfiguration, and (3) System monitoring.



Internally, several driver tasks and activity triggers are
address-mapped. For example, we program the AXI switch
(specify input→output connection) using PIO register writes.
The DMA controller configuration is also programmed using
address-mapped PIO writes.

E. High-Level Synthesis Workflows

Each of the high-level synthesis tools considered in this
paper generates hardware that matches a standard set of
IO protocols that are AXI-friendly. To use our driver, we
expect the hardware designer to have an existing hardware-
generation and functional simulation workflow in place. The
driver provides an API to access the physical FPGA as shown
earlier in Table II.
• For SCORE and Vivado HLS, the functional simulation

will need to be manually modified to target the FPGA
backend. For example, in Listing 2, the original functional
simulation will simply call the foo function with data allo-
cated on the host. The load bitstream, fpga transfer data,
fpga malloc and fpga free calls presently have to be man-
ually written (but should be automatable).
• For Bluespec, test-benches can be synthesizable but there

is no straight-forward solution for integrating Bluespec-
compiled code into a C/C++ harness (although the other
way round is possible). In [18], the authors explore the
possibility of automatically performing hardware-software
partitioning of Bluespec code. This may be a potential way
forward for integration with our driver.
The HLS-generated Verilog must be manually instantiated

within a wrapper we supply. For simple interfaces, Verilog
assembly can also be automated.

V. CHARACTERIZATION

In this section we characterize the key functional properties
of our driver and compare it to some other platforms. We
demonstrate the performance achievable over the different in-
terfaces, and discuss technical limitations. Experimental results
are shown for the ML605 board but functionality is also tested
on the VC707.

A. Driver Hardware Cost

The area usage of the FPGA driver is presented in Table III
for the ML605 board and Table IV for the VC707 board. Our
driver logic consumes less than 15% of the XC6VLX240T
on the ML605 and less than 8% of the XC7VX485T on
the VC707 (logic resources), leaving the bulk of the FPGA
available for user logic. PCIe endpoint cores, DDR, and Eth-
ernet controllers are generated using Xilinx Coregen. Timing
constraints can only be met by locking down the locations
of all BRAMs used in the design, especially on the ML605.
We should note that certain elements of the driver design
are user-configurable (e.g. number of PCIe/DRAM channels,
Ethernet core inclusion, multiboot support) and can be adjusted
to reduce resource usage if desired.

TABLE III: Resource utilization for ML605– 4 user channels
(XC6VLX240T device).

Component Area Clock
FFs LUTs BRAMs (MHz)

PCIe Manager 7448 6346 36 250
DRAM Manager 14835 12252 40 200
Ethernet Manager 2780 2527 11 125

Total 25063 21125 87
(% XC6VLX240T) 8% 14% 21%

TABLE IV: Resource utilization for VC707 – 4 user
channels (XC7VX485T device).

Component Area Clock
FFs LUTs BRAMs (MHz)

PCIe Manager 8101 6130 36 250
DRAM Manager 16401 13799 40 200
Ethernet Manager 4839 3918 11 125

Total 29341 23847 87
(% XC7VX485T) 5% 8% 9%

B. PCIe DMA Transfers

Transferring data over the PCIe interface is a cornerstone
of the driver’s functionality. This can involve transferring data
from the Host to the FPGA DRAM, or to user logic.
• In Fig. 4(a), we show the achievable throughput for

different transfer sizes from Host→FPGA DRAM. For
large transfers, throughput peaks at just under 1.5GB/s.
Similarly, the reads saturate at 1.45GB/s for large transfers
(not shown). Our driver is able to match other drivers’
throughputs (both FPGA and GPU) and only loses to the
NVIDIA GT650M due to its superior PCIe Gen3 support.
• Our driver supports direct streaming of data from

Host↔FPGA user logic over PCIe, as in the case of RIFFA.
Writes peak at over 1.3GB/s, while reads peak at over
1.5GB/s while assuming similar termination at user logic
as in [6]. In Fig. 4(b), we see that non-blocking transfers
(with deferred synchronization) offer better behavior for for
small transfers.
• We also support double-buffered writes (via FPGA

DRAM) to FPGA user logic which offer a throughput of
1.47GB/s. From Fig. 4(b), we observe that our DRAM-
based double-buffered transfer performance matches the
direct PCIe transfer performance with the benefit of having
access to a larger FPGA DRAM capacity for storage and
saving half the copying time.

C. PIO Transfers

Register operations are also supported through the API.
Register operations involving on-FPGA registers take 133ns
(write) and 1445ns (read). PIO operations to the FPGA
DRAM take longer at 264ns (write) and 1785ns (read). If
the DRAM controller is busy with refresh/activation on the
DRAM banks/rows, we also measure a worst-case latency of
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Fig. 5: FPGA user logic→FPGA DRAM throughput

424ns (write) and 1922ns (read). In all cases, reads take longer
due the 2× round-trip communication over the PCIe interface.

D. Ethernet Transfers

We conduct throughput experiments on the FPGA Ether-
net interface and record a peak bandwidth of 120.24MB/s
(≈96% of peak 1G rate) when transferring 64MB of data
in either direction. Enhancements to the FPGA Ethernet
MAC’s IFG (inter-frame gap) allow higher read through-
puts (FPGA→Host) by ensuring a near-constant stream from
DRAM to the Ethernet interface.

E. User Logic Transfers

While data can be streamed directly into user logic over PCI,
throughputs are limited to ≈1.45GB/s which is comparable
performance to Host→FPGA DRAM transfers. Our driver
offers improved performance for transfers from user logic
to FPGA DRAM (Fig. 5) at a substantially higher data-
rate of up to 5.9GB/s when using 4 parallel user channels.
The programming flow in such a case is closer to that of
CUDA: data is transferred from Host→Accelerator DRAM,
the computation is executed on this DRAM data, and DRAM
data is read back from Accelerator→Host.

TABLE V: High-Level Synthesis Reports (ML605).

Example Area Clk
FFs LUTs DSP (ns)

Vivado HLS
32-bit Incrementer 2192 3105 0 4.1
32-bit Squarer 2225 2978 3 4.4

Bluespec
32-bit Incrementer 2091 1881 0 3.0
32-bit Squarer 2042 1007 3 8.6

SCORE
32-bit Incrementer 2102 1552 0 3.4
32-bit Squarer 2070 1197 3 8.9

*Area includes 32-deep IO FIFOs in distributed RAM

F. Reconfiguration

When reconfiguring the FPGA over USB/JTAG with un-
compressed bitstreams it takes 21 seconds on the ML605, or
17 seconds on the VC707 (the larger bitstream for the V7
is balanced by a faster JTAG clock). Alternatively, multiple
bitstreams can be stored in flash memory on the board, and
loaded at run time by issuing a reconfiguration command. The
time to reconfigure from flash was measured at 120ms on the
ML605, and 130ms on the VC707.

G. High-Level Synthesis Interfaces

In Table V, we report the resource usage and clock fre-
quency of the different HLS designs we verified against our
driver. We implement the same set of examples in all HLS
environments and verify their correctness in simulation as well
as a real board. While these examples are small and use simple
streaming interfaces, they demonstrate the portability of our
underlying driver.

H. Other Drivers

In Fig. 6, we show a Kiviat diagram of resource usage and
performance for different FPGA drivers on the ML605. The
SIRC, RIFFA 1.0 and RIFFA 2.0 drivers require substantially
fewer resources compared to others. While RIFFA 1.0 delivers
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low PCIe throughput, this is rectified in RIFFA 2.0 which
exceeds our PCIe throughput by a modest amount. SIRC
matches the Gigabit Ethernet line rates achieved by our driver.
However, unlike these implementations, our driver provides
DRAM support (requiring asymmetric FIFOs with a cost of
24 BlockRAMs) as well as Ethernet connectivity. The more
capable OpenCPI driver trades off BRAM capacity for lower
PCIe and DRAM throughputs than our driver. Our driver
matches the performance of Maxeler for PCIe with a lower
resource utilization but is unable to beat the 15× parallel
memory banks (≈6× higher bandwidth) in the MAX3 DRAM
interface.

VI. DISCUSSION

Considering the aims of this driver, using partial reconfig-
uration (PR) to separate user logic is an attractive prospect,
as it would allow just the user logic bitstream to be generated
and loaded as and when needed. However, our attempts with
PR raised issues to do with the floorplanning requirements of
the design tools [19]. To place the I/O portions of the design
(DRAM, PCIe, Ethernet) into a static region, a significant area
of the FPGA is reserved by virtue of the spatial arrangement of
these pins. As a result, only half the FPGA remains available
for user logic, despite the driver not using all the resources in
the reserved region. This suggests that hardening full interface
drivers (as in the Xilinx Zynq) may be a more promising
approach.

VII. CONCLUSIONS AND FUTURE WORK

We have shown how to integrate multiple physical inter-
faces (PCIe, DRAM, Ethernet, Reconfiguration) on FPGA
fabric with hardware logic interfaces generated from high-
level synthesis tools (Vivado HLS, Bluespec, SCORE) as
well as their corresponding test-bench wrappers running on
the host CPU. Our driver consumes less than 15% of logic
resource on the ML605 platform while delivering between
74–95% of physical interface throughputs. This FPGA device
driver will be released as open source for use by the FPGA
community. We intend to expand support for other user logic
interfaces, OpenCL bindings, expanded board compatibility,
AXI address/data user-level interface (with embedded memory
protection), SATA disk interface integration, ICAP readback

for fast BRAM data reloading, and other features in a future
release of the driver. The device driver is available for public
download from https://github.com/vipinkmenon/fpgadriver.git
and is compatible with 64-bit Ubuntu 12.04 out-of-the-box.
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