Efficient Region Allocation for Adaptive Partial
Reconfiguration

Kizheppatt Vipin, Suhaib A. Fahmy

School of Computer Engineering
Nanyang Technological University
Nanyang Avenue, Singapore

vipin2@e.ntu.edu.sqg,

Abstract—While partial reconfiguration on FPGAs has at-
tracted significant research interest in recent years, designing
systems that leverage it remains a specialist skill. Systems with
a large number of reconfigurable modules can be challenging to
design. Deciding on how many reconfigurable regions to use is
not always straightforward, yet this choice impacts area efficiency
and configuration latency. Current FPGA partial reconfiguration
tool flows require the designer to have detailed knowledge of
the physical architecture of the FPGA. It is the responsibility
of the designer to decide on the location and size of regions.
In this paper we introduce a formulation for determining the
tradeoff between the number of reconfigurable regions, the allo-
cation of modules to regions, and the reconfiguration overhead,
represented by area and reconfiguration time. Throughout the
investigation, we consider the heterogeneous nature of modern
FPGAs as well as limitations imposed by current tools. We then
show that adopting an optimal allocation can result in both area
savings and a reduction in reconfiguration time over a standard
approach to allocation.

I. INTRODUCTION

Partial reconfiguration has remained a constant research
theme within the FPGA community since it was first mooted.
The core premise — that since the full configuration of an
FPGA is stored in volatile memory it can be changed at
runtime — while simple and enticing, has seen many technical
hurdles prevent it from being adopted in mainstream design.
Coupled with these challenges is the search for applications
that can truly take advantage of this feature.

The circuit implemented in an FPGA can be altered by mod-
ifying the contents of its configuration memory. In a full FPGA
configuration, the contents of the whole configuration memory
are modified. Selectively modifying the contents of only part
of it is called Partial Reconfiguration (PR). Reconfiguring only
a portion of the FPGA means the time required, and energy
consumed, for reconfiguration are reduced [1]. Some modern
applications can adapt their processing to environmental con-
ditions. This adaptation typically relies on switching between
multiple modes of operation; this adaptation can be efficiently
implemented using partial reconfiguration.

Although runtime partial reconfiguration has advantages
over full reconfiguration, it presents a greater challenge to the
designer, and current tools impose a number of limitations. The
designer must decide how to partition the FPGA between the

978-1-4577-1740-6/11/$26.00 (© 2011 IEEE

sfahmy@ntu.edu.sg

static, always-on, parts and reconfigurable regions, requiring
detailed knowledge of the FPGA architecture. The designer
must also determine which modules should be assigned to
which regions and hence the granularity of reconfiguration.
Some work has been done to mitigate these limitations, but
existing approaches are only suitable for use by FPGA experts.
Hence the system designer and the module designer are
typically one and the same, with extensive hardware experi-
ence. For systems incorporating partial reconfiguration, design
decisions can impact the cost of using PR. The number of
regions used, and the allocation of reconfigurable modules to
regions can impact resource requirements considerably. Hence
for greater savings, this allocation should be done intelligently.

The primary cost associated with partial reconfiguration is
reconfiguration time. In a circuit in which all functionality is
present on chip, selecting between modes typically takes just a
few clock cycles. When using PR, the system must pause, and
the PR region must be reconfigured, which takes time. Smaller
regions result in shorter reconfiguration times, but can impact
area efficiency. Hence, in this work, we try to optimise these
two factors together to arrive at an optimal allocation.

In this paper, we propose techniques for automatically
determining the optimal reconfiguration scheme for a given
adaptive application. Based on a representation of the applica-
tion, the tools propose the best arrangement of reconfigurable
regions and how modules should be assigned to those regions.
In this paper, we are most interested in adaptive applications
where reconfiguration occurs at the module level, such as
a change in coding scheme in a radio system. This sort of
reconfiguration occurs on an unpredictable, as-needed basis,
and is at the functional, rather than task, level. The aim is
that an adaptive systems designer can design a system that
takes full advantage of partial reconfiguration, using a library
of components developed by RTL designers, without needing
experience in low-level FPGA details.

The rest of this paper is organised as follows: Section II
discusses related work, Section III investigates the existing
partial reconfiguration tool flow for Xilinx FPGAs, Section IV
discusses the reasoning behind the method and the mathemat-
ical formulation, Section V presents some results of optimal
region allocation for an example application and Section VI
concludes the paper.

II. RELATED WORK

Much has been published in recent years concerning partial
reconfiguration (PR). This has included methods for efficient
partial reconfiguration and practical applications using PR.
When Xilinx introduced partial reconfiguration for the first
time in Virtex devices, there were severe restrictions on how
reconfigurable regions could be arranged. They had to extend
the whole height of the device and the designer had to man-
ually place additional hardware blocks called “bus-macros”
between the static and dynamic regions to preserve routing
between them. In [2], the authors describe a rapid prototyping
methodology for Xilinx FPGAs taking into account these
limitations. Modules are implemented in slots extending the
whole height of the device and are connected to a standard
shared bus. The designer merges the module bitstream with
the configuration bitstream using a tool called JBits. In [3],
two methods are proposed for partial reconfiguration in Virtex
devices. The first method uses partially reconfigurable regions
extending the whole height of the device, while the second
method allows modules to be assigned arbitrary rectangular
shapes, by way of a new bitstream merging process and
reserved routing.

In [4] a framework for dynamic reconfiguration is in-
troduced and the authors describe challenges in PR design
including partitioning and floor planning, but no solution for
partitioning is suggested. [5] and [6] describe floorplanning
methods for partial reconfiguration once manual partitioning
has been performed by the designer. A method to assign
modules to regions, given a fixed number of regions, based
on communication graphs, is presented in [7].

Work on high-level abstraction of PR systems at runtime
has been done. In [8] a software framework for implementing
adaptive systems on FPGAs is described. This work uses a
layered structure separating control and processing planes and
decoupling system adaptation from FPGA hardware reconfig-
uration.

In terms of cost analysis of partial reconfiguration, perfor-
mance bounds for high-performance computing are evaluated
in [9]. This study develops an execution model for runtime
partial reconfiguration and analyses the results on the Cray
XD1 reconfigurable computer. In [10] the authors investigate
the energy efficiency of partial reconfiguration and show that
the energy savings depend significantly on the speed of the
reconfiguration process.

While bottom-up, architecture-based research such as online
placement has proven interesting, recent devices with more
heterogeneous blocks and more complex non-uniform routing
make these approaches harder to implement and keep up to
date [11]. Hence we feel it is more effective to develop tools
that integrate with vendor-supported tool flows to address the
challenges of partial reconfiguration, focussing more on top-
down simplification of this unique feature of FPGAs for use by
those who are not architecture experts. Furthermore, as vendor
tools increase in sophistication, the effectiveness of these tools
can also increase.

ﬁc1ﬂo1%

> C2

Al =

A2 —> B1

A3 L B2 C3 ' D3

u

|

jﬁ"DZ‘l_’
|
|
|

Fig. 1. Example PR design.

III. PARTIAL RECONFIGURATION TOOL FLOW

It is first important to define the terms we use in this paper.
A PR region is an area on the device allocated to logic, that
can be reconfigured at runtime. It includes different types
of basic primitives such as Slices, BlockRAMSs, DSP Slices
etc. A module is a processing unit in the design and may
have multiple modes. In this discussion, modes are mutually
exclusive implementations of the module with the same set
of inputs and outputs. At runtime, we may wish to switch a
module from one mode to another. A configuration is a set of
possible co-existent modes for all the modules in the system.
Since not all possible combinations of module modes will be
valid, this allows us to focus on solutions that are optimal for
valid sets of modes.

For efficient implementation and management, a hierar-
chical module based design approach should be followed
for PR designs [1]. Fig. 1 shows an example PR design.
The first task is to divide the design into static logic and
reconfigurable modules. The functionality of the static logic
does not change during FPGA operation. There can be one or
more reconfigurable modules. In Fig. 1, module S represents
the static logic and modules A, B, C, and D represent
reconfigurable modules. A, Ao, and Ag are different modes
of reconfigurable module A. The designer should ensure that
each region contains sufficient resources to implement all
modes of the modules assigned to that region. This requires
FPGA architecture knowledge and manual floorplanning. For
the example design, S — A; — B; — C1 — Dy is a possible
configuration. Each configuration contains the static logic and
one of the possible modes for each reconfigurable module.
In the current supported tool flow, configurations do not play
any role in synthesis, since the reconfigurable modules and the
assignment of regions, are performed manually.

IV. PROBLEM FORMULATION

A. Fundamentals

From Section III, it is clear that the current supported PR
tool flow requires extensive input from the designer, who is
expected to know the details of the target FPGA architecture,
as well as preparing all region netlists. In this paper, we
formulate an analytical model, which can integrate with the
existing PR tool flow in order to generate efficient PR designs
without detailed input from the designer. Given an application
description this tool will define the optimal number, and size,
of partial regions and the assignment of modules to those

regions. It will then pass this information and the resulting
netlists to the PR implementation tools.

The simplest way to partition the FPGA for partial re-
configuration is to divide the whole FPGA into two: one
static region and one PR region. All the static logic in the
design is implemented in the static region, while modules that
require reconfiguration are implemented in the PR region. This
approach has some benefits such as the designer only needs to
allocate a single region, large enough to hold the most resource
hungry configuration and the tools can optimise area usage and
timing across all modules, resulting in the best possible timing
performance and area. However, some major drawbacks mean
this method is not ideal. Firstly, each time any module in the
region needs to be reconfigured, the whole region must be
reconfigured, and so the frequency of reconfiguration will be
the sum of the frequencies of reconfiguration for all modules.
Secondly, since the whole region must be reconfigured even
if a small module is being changed, the reconfiguration time
is increased, in some cases significantly. Finally, designs
with many possible combinations of modes will require a
large bitstream for each possible configuration, resulting in
significant storage being required to store bitsreams. Hence,
simply allocating all reconfigurable modules to a single region
is not ideal for systems that rely on minimising reconfiguration
time and bitstream storage.

Generally, a one-region-per-module approach will offer the
lowest worst-case reconfiguration times, since a region will
only reconfigure when its sole module needs to, and the size
of the region is only as large as the largest mode of that single
module. However, a one-region-per-module approach is the
least area-efficient way to allocate regions.

An analytical approach would allow us to determine how
many regions to use, and which region each module should
be allocated to, with a view to minimising reconfiguration
time, while also maintaining area efficiency. System config-
urations play an important part in the following discussion.
For most systems, not all combinations of module modes
will be encountered at run time. In fact, there are normally a
small number of possible combinations, that are referred to as
configurations. Configurations greatly reduce the search space,
since we only need to consider possible mode combinations
to arrive at an optimal allocation. By using configurations, we
limit the cost of combining modules into regions, and allow
further analysis of the reconfiguration time. Consider two
modules, each with a large and small mode, as shown in Fig.
2. If they are allocated to separate regions, the regions must
each be large enough for the largest mode of the corresponding
modules. However if we know that the largest modes for both
modules never exist together, then if they are combined in a
single region, that region only needs to be large enough for
the largest overall configuration.

B. Proposed Tool Flow

Our proposed tool flow for solving this PR region allocation
problem is shown in Fig. 3. The designer provides design
files for all modules (in all modes), a list of allowable

B B
conf3 Al E Al Zl
"""""" _ '_"_'.'"_"_"_:""",_"_"_"_"_"_';'
| R1 || R2 | | R1
e L L S s N I

Fig. 2. When assigning modules to separate regions, if some configurations
do not exist, combining modules into a single region can save area.

Module designs

Synthesis tool

%Area estimates

Equation generator

¢ Equations

Configurations
e

Solver Constraints

Optimal number of reconfigurable
regions and associated modules

Fig. 3. Proposed tool flow.

configurations and design implementation constraints (such as
timing requirements) to the automation script in XML format.
The script performs the following steps:

1) Vendor supplied XST tool is used to synthesise all
modules in order to extract the resource requirement
information for all modes of all modules. (Alternatively
resource estimation techniques can also be used [12]. If
IP cores are used for some modules, usage information
is often available up front.)

2) Resource requirements are passed to the equation solver
with a list of valid configurations. It uses these inputs
with the formulation discussed in the next section, and
determines the optimal region configuration.

3) Once a region allocation has been decided, wrapper
modules are created that represent different configura-
tions for each region.

4) A netlist for each wrapped configuration is then auto-
matically generated using the vendor synthesis tools.

5) Determining the floorplanning of the static and recon-
figurable regions must then be done. A number of
floorplanners are available that are tailored for partial
reconfiguration [5], and these may be used. Alterna-
tively, a manual approach using Xilinx PlanAhead is
possible. We are also currently working on a more
efficient floorplanner, targeting the uneven distribution
of heterogeneous resources on modern FPGAs.

6) The area constraints generated by the floorplanner along
with the timing requirements are used to generate the

User Constraints File, which directs the place and route
tool to achieve design goals. The netlists generated,
as well as the User Constraints File, are passed to
PlanAhead, which performs the placement and routing
operations.

C. Mathematical Formulation

To solve the allocation problem, we represent it mathemati-
cally using an objective function and a number of constraints.
Based on the previous analysis, the problem of finding the
optimal number of regions and the region that each module
should be assigned to can be described using the objective
functions:

1) Minimise the total FPGA resource requirement,
2) minimise average reconfiguration time.

Subject to the conditions:

1) All modules in the design being implemented,

2) all required configurations being implemented,

3) each module being implemented only once,

4) the design fitting in the given device,

5) the number of PR regions being greater than or equal to
1 and less than or equal to the total number Reconfig-
urable Modules.

We denote the variables used in the formulation as shown
in Table I.

TABLE I
NOTATION USED IN FORMULATION.
Notation | Meaning
F; Total amount of resource type 7 in the FPGA (types can
be Slice, BRAM, DSP)
N Total number of reconfigurable modules
C Set of Configurations
Rs Reconfiguration speed
dug Decision variable — 1 if module w is present in reconfig-
urable region ¢ otherwise 0
dyme Decision variable — 1 if module u is present in mode m
in configuration ¢ otherwise 0
Ruivax | Maximum number of resource type ¢ used by module w
wmi Number of resource type ¢ used by module u in mode
m
Rg; Total requirement of resource type % in the partition
scheme
Ryic Number of resource type ¢ used in region ¢ in configu-
ration ¢
Ryi Maximum number of resource type 7 consumed by region
q
Aq Area of region q in normalized units
W; Area weighing factor for resource type ¢
Wi Number of frames in resource type ¢
tq Reconfiguration time for region g
te Reconfiguration time for configuration ¢
tw Worst case reconfiguration time
ta Average reconfiguration time

The maximum number of resource type ¢ for module u is
given by the maximum usage of ¢ in different modes of u:

Ryimax = mﬂ%X(Rumi)a (D

Since each module should be implemented only once, the sum
of allocation decision variables should be 1:

Z dyg = 1.)

If multiple reconfigurable modules are merged into a single
region, the area required for resource type ¢ for each configu-
ration c is determined as follows. The area required for each
mode of module u is taken into account only if the mode
exists in the current configuration c. The area required for
each module is summed over all modules present in region gq.
The partition method can vary from using a single region to
using a separate region for each module.

quc = Z Rumi * dume * duq; c=1,2, G5 g=12..N
3)

From the set of resource requirements for different config-
urations, the maximum resource requirement for type ¢ is
determined, which is the required result:

Ryi = max(Ry;c) “4)

The total amount of resource type ¢ required for the whole
design is the sum of resource type ¢ among all the regions:

Rai =Y Ry)
q

In order for the design to fit into a particular FPGA, for each
resource type 4, the total resources required should be less than
or equal to resource type ¢ present in the FPGA:

Fi— R4 >0 (6)
The total area cost of region q is given by:

Ay = Wix Ry,)

where W; is the weighing factor for resource ¢ calculated as
the ratio of total resources to resources of type i.

Now consider reconfiguration time. Reconfiguration time
for region ¢ can be determined by dividing the area of g by
the speed of configuration.

tg =Y Wi+ Ryi/Rs, ®)

where Wy; is the weighing factor determined by the number
of reconfigurable frames required for resource type i. When
modules are merged, reconfiguration of any of the modules in
the region will lead to the reconfiguration of the whole region.
The frequency of reconfiguration is application dependent.
Total configuration time for the system when it changes from
configuration ¢; to configuration c; is calculated as the sum
of the configuration time for regions, whose modules change
their modes.

te= D tqxdeg, 9)
q

S S
3 3 3
m m e}
n o @
4 % o4
O a foa)
One Frame ROW1 TOP
CLB Tile — ROWO0 TOP
DSP Tile ROWO0 BOTTOM
BR Tile ROW1 BOTTOM

Fig. 4. Virtex 5 FPGA architecture.

where doq = 1 if, for any dyg = 1, dume; # dume; €lse 0.
Average reconfiguration time is the average of all possible
configuration times.

to =t (10)

Worst case reconfiguration time (t,,) for a partition scheme
is calculated as the maximum reconfiguration time among all
possible configuration transitions.

ty = max(t.)

(1)

In order to improve the overall system performance, average
reconfiguration time is selected as the minimisation objective.
For applications where a strict reconfiguration time limit must
be met, worst case reconfiguration time can be selected as
the objective function. The solutions to the equations are
generated using an equation solver written in C. The average
reconfiguration time results are then plotted against resource
requirements and the Pareto-Optimal points determined.

V. OPTIMAL REGION ALLOCATION
A. Architecture Analysis

In Xilinx Virtex FPGAs, the smallest reconfigurable unit is a
frame. In Virtex-5 FPGAs, the height of a frame spans an entire
device row [13]. The number of rows! in a device depends
upon the size of the device. In the Virtex-5 FX70T, which
contains 11,200 Slices, 128 DSP Slices and 296 BlockRAMs,
there are eight rows. A row crosses columns of different
resource types, including Configurable Logic Blocks (CLBs),
DSP Slices and Block RAMs. These columns extend the
full height of the device and are referred to as blocks. A
tile is one row high and one block wide, and contains a
single type of resource as shown in Fig. 4. One CLB tile
contains 20 CLBs, one DSP tile contains 8 DSP Slices and one
BRAM tile contains 4 Block RAMs. For accurate calculation
of efficient partial reconfiguration schemes, the reconfigurable

INote “rows” here refers to a Xilinx term used in their architecture
descriptions.

regions should be considered in terms of these basic tiles
since configuration must occur on a per-tile basis. Hence in
all equations, the resource ¢ represents one tile of resource
type ¢ (Slice, DSP, BRAM, etc). The XC5VFX70T device
contains 280 CLB tiles, 16 DSP tiles and 74 Block RAM
tiles. A general measure of area cost for each region is found
by normalising the area for CLB tiles, DSP tiles and BRAM
tiles. The normalisation factor used is 1:18:4 for CLB, DSP
and BRAM tiles respectively, based on the number of tiles in
the device, corresponding to W; in the formulation. One CLB
tile comprises 36 configuration frames, a DSP tile 28 frames
and BRAM tile 30 frames, which corresponds to Wy; in the
formulation.

B. Application Results

Here, we apply our region allocation approach to an ex-
ample design implemented on a Virtex-5 FX70T FPGA. The
design has one static region and five reconfigurable modules.
The design is a wireless video receiver chain with blocks
used from existing designs and vendor IP. The system can
operate in various modes, and adapts to channel conditions
and user requirements at runtime. The resource utilisation for
each reconfigurable module and mode is as shown in Table II.

TABLE I
RESOURCE UTILISATION FOR RECONFIGURABLE MODULES.

Module | Mode | Slices | BR | DSP
. 1. Filterl 818 0 28
Matched Filt () | 5" g | 500 | 0 | 34
1. Fine 318 1 13
2. Coarsel 195 1 5
Recovery (R) 3. Coarse2 | 123 | 0 | 8
4. None 0 0 0
Demodulator (M) ; gllzgi 3(7) 8 i
1. Viterbi 630 2 0
Decoder (D) 2. Turbo 748 15 4
3. DPC 234 2 0
1. MPEG4 | 4700 40 65
Decoder (V) 2. MPEG2 | 4558 16 32
3. JPEG 2780 6 9

A sample of configurations used is shown here:
S—)F1—>R3—>M1—>D1—>V1
S —F — Rs3 — M, — D1 =V,
S—F — Rs— M — Dy — Vs

This system description was formulated as in the previous
section, and the solver used to find the optimal solution. The
transition between configurations is modelled in a random
fashion with each configuration transiting to at least 5 other
configurations.

A plot of average reconfiguration time against total resource
requirements is shown in Fig. 5. Reconfiguration speed is taken
as 234 MB/s [14]. Several of the solutions are infeasible due
to a lack of resources in the chosen device. Using a one-
region-per-module scheme, this design will not fit into the
XC5VFXT70T device, since that scheme requires 18 DSP tiles

4.4~

oFRMDV} s :
*{M}{FRDV} . Infeasible Region
4.2r ° PP
o{FMHRIV} . i
g 4r ®e E ..(F}(D){RMV}
238
= .
S 3.6f (FRYMDV} H *{RKMKDXFV}
s ¢ L 1o (F{RKM}{DV
33-4’ {MVHFRD} :°(HRK }{. }
€ .
2 3.2F H
c‘ H
2 .
<28t :
2.6 o{RHVHFMD} @
{V{FRMD}es . ° ® {FHRHMH{DHV}
‘ ‘ ‘ . omMiRuD L
470 480 490 500 510 520 530 540 550 560
Resource utilisation (Normalised tiles).
Fig. 5. Resource requirement and configuration time.

and the device has only 16. Using a larger FPGA would
increase system cost significantly. The partition scheme in
which all the modules are implemented together (labelled
{FRMDV}) gives the lowest resource utilisation of 473 tiles,
but the average reconfiguration time for this scheme is con-
siderably higher at 4.32 ms. Using the proposed partitioning
method, we can find schemes that fit the design into the
FX70T device with lower reconfiguration time. This is one
of the attractions of using this analytical method. There are
six Pareto optimal points in the feasible region of the plot.
The configuration in which the decoder (V) is implemented in
a single region and all other modules are implemented together
in another region, labelled {V},{FRMD} in the plot, gives the
lowest average reconfiguration time. This scheme uses 504
normalised tiles and has a average reconfiguration time of
2.52 ms. The scheme in which the filter (F) and recovery (R)
modules are combined in a single region and other modules are
implemented together (labelled {FR},{MDV} in the plot) lies
closest to the origin and hence is the optimal partitioning. This
scheme uses 478 normalised tiles and the average reconfigura-
tion time is 3.54 ms and hence gives 13.5% area improvement
compared to one-module-per-region partitioning. Worst case
reconfiguration time for the optimal scheme is 4.36 ms, that for
one-region-per-module partitioning is 4.69 ms. The bitstream
storage requirement for these partitions was also calculated.
The optimal solution {FR},{MDV} requires 53 Mbits storage
while implementing all modules in a single region requires 81
Mbits to store bitstreams. These results depend significantly on
the configurations defined by the application. The upper bound
area consumption will be that of using separate regions for
each module and the lower bound is a single-region scheme.

VI. CONCLUSION AND FUTURE WORK

Determining the number of partial reconfiguration regions
and the allocation of reconfigurable modules to regions is
not always trivial, but this choice can impact FPGA resource
utilisation, reconfiguration time and the storage requirement

for configuration bitstreams. In this paper we showed how to
determine the tradeoff between the number of reconfigurable
regions and reconfiguration overhead. A new technique for de-
termining the optimal number of regions and the assignment of
reconfigurable modules into these regions has been introduced,
which can be incorporated into the existing vendor-supported
partial reconfiguration tool flow. It is demonstrated that effi-
cient reconfiguration schemes improve resource consumption
and reduce reconfiguration time. The method presented here
will help designers with less FPGA architecture knowledge to
generating efficient PR implementations, allowing designs to
fit within limited device constraints.

We are currently working on an efficient floorplanner to
manage the placement of the optimal regions. The floorplan-
ner, solver along with vendor supplied synthesis and place and
route tools will bring us one step close to achieving the ulti-
mate goal of enabling fully automated partial reconfiguration
design for adaptive applications.

REFERENCES

[1]
[2]

UG702: Partial Reconfiguration User Guide, Xilinx Inc., 2010.

C. Bieser, M. Bahlinger, M. Heinz, C. Stops, and K. D. Mueller-Glaser,
“A novel partial bitstream merging methodology accelerating Xilinx
Virtex-II FPGA based PR system setup,” in Proceedings of Int. Conf.
on Field Programmable Logic and Applications (FPL), 2006.

P. Sedcole, B. Blodget, T. Becker, J. Anderson, and P. Lysaght, “Modular
dynamic reconfiguration in Virtex FPGAs,” IEE Proceedings of Com-
puters and Digital Techniques, vol. 153, no. 3, pp. 157-164, 2006.

C. Conger, R. Hymel, M. Rewak, A. D. George, and H. Lam, “FPGA
design framework for dynamic partial reconfiguration,” in Proceedings
of Reconfigurable Architectures Workshop (RAW), 2008.

L. Singhal and E. Bozorgzadeh, “Multi-layer floorplanning on a se-
quence of reconfigurable designs,” in Proceedings of Int. Conf. on Field
Programmable Logic and Applications (FPL), 2006.

P. Banerjee, M.Sangtani, and S.Sur-Kolay, “Floorplanning for partial
reconfiguration in FPGAs,” in Proceedings of International Conference
on VLSI Design, 2009.

V. Rana, S. Murali, D. Atienza, M. D. Santambrogio, L. Benini, and
D. Sciuto, “Minimization of the reconfiguration latency for the mapping
of applications on FPGA-based systems,” in IEEE/ACM Int. Conf. on
Hardware/Software Codesign and System Synthesis (CODES+ISSS),
2009.

S. Fahmy, J. Lotze, J. Noguera, L. Doyle, and R. Esser, “Generic soft-
ware framework for adaptive applications on FPGAs,” in Proceedings
of IEEE Symp. on Field-Programmable Custom Computing Machines
(FCCM), 2009.

E. El-Araby, 1. Gonzalez, and T. El-Ghazawi, ‘“Performance bounds
of partial run-time reconfiguration in high-performance reconfigurable
computing,” in Proceedings of Int. Works. on High-performance Recon-
figurable Computing Technology and Applications (HPRCTA), 2007.

S. Liu, R. Pittman, A. Forin, and J. Gaudiot, “On energy efficiency
of reconfigurable systems with run-time partial reconfiguration,” in
Proceedings of IEEE Int. Conf. on Application-specific Systems Archi-
tectures and Processors (ASAP), 2010.

D. Koch, C. Beckhoff, and J. Torrison, “Fine-grained partial runtime
reconfiguration on Virtex-5 FPGAS,” in Proceedings of IEEE Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), 2010.

P. Schumacher and P. Jha, “Fast and accurate resource estimation of
RTL-based designs targeting FPGAs,” in Proceedings of Int. Conf. on
Field Programmable Logic and Applications (FPL), 2008.

UGI191: Virtex-5 FPGA Configuration User Guide, Xilinx Inc., 2010.
M. Liu, W. Kuehn, Z. Lu, and A. Jantsch, “Run-time partial reconfig-
uration speed investigation and architectural design space exploration,”
in Proceedings of Int. Conf. on Field Programmable Logic and Appli-
cations (FPL), 2009.

[3]

[5]

[6]

[7]

[9]

[10]

(11]

[12]

[13]
[14]

