Enabling High Level Design of Adaptive Systems
with Partial Reconfiguration

Kizheppatt Vipin, Suhaib A. Fahmy
School of Computer Engineering
Nanyang Technological University
Nanyang Avenue, Singapore

vipin2@e.ntu.edu.sg,

sfahmy@ntu.edu.sg

(PhD Forum Paper)

Abstract—Adaptive systems have the ability to respond to
environmental conditions, by modifying their processing at
runtime. While this is easy to do software systems, modern
algorithms can be computationally expensive, requiring powerful
processors. At the same time hardware is not as flexible. Field
programmable gate arrays (FPGAs) are recognised as being
suitable for adaptive systems implementation, due to their flexi-
bility and high performance. The use of partial reconfiguration
on FPGAs to implement adaptive systems has been proposed
many times in the literature. However the design process for
partially reconfigurable systems is complex and requires specialist
knowledge on behalf of the application designer. Hence, it has
remained a rarely used capability outside of academic circles.
We propose a new approach to leverage partial reconfiguration
within adaptive systems, by integrating with, rather than cir-
cumventing, supported vendor tool flows, while automating many
of the steps that have made such designs more difficult in the
past. This makes it possible for system designers with less FPGA
expertise to use partial reconfiguration when designing adaptive
systems.

I. INTRODUCTION

Adaptive systems are able to respond to variations in their
environment, leading to more sophisticated applications as
well as improved application performance. For example, a
software defined radio can change its modulation technique
or coding scheme based on variations in channel conditions
[1] and a driver assistance system can modify its analysis
algorithms based on road conditions [2].

FPGAs appear to be a suitable candidate for adaptive
hardware systems, due to their high performance and flexi-
bility. Some of the hindrances associated with the adoption
of FPGAs in the design of adaptive systems have been
mitigated over the past few years. Specifically, dynamic partial
reconfiguration (PR) is now supported in FPGA vendor design
flows. PR exploits the fact that functionality implemented in
an FPGA can be altered by modifying the contents of its
configuration memory. By selectively modifying parts of this
memory, portions of the system can be modified, while the
remaining portions continue to operate. Vendors such as Xilinx
already provide devices as well as tools that support partial
reconfiguration and Altera has announced support for PR in
their next generation FPGAs. PR has led to the concept of

978-1-4577-1740-6/11/$26.00 (© 2011 IEEE

hardware virtualisation, in which unused regions of an FPGA
can be repurposed for additional functionality, effectively time-
sharing the silicon.

Although PR was introduced over a decade ago, it still
remains an expert feature due to tool limitations and limited
automation, and hence, system designers who are not FPGA
experts find it difficult to exploit this feature. Current FPGA
tools that support PR require the user to provide architecture-
dependent information for the implementation of designs. The
efficiency of the system implementation greatly depends upon
the inputs provided by the designer. This mandates that the
system designer should have considerable knowledge of FPGA
architecture, and the mechanics of the PR operation, in order
to efficiently integrate PR in their design. This architecture
dependency makes PR less attractive to system designers, who
are not FPGA experts.

Through our work, we aim to introduce a design framework
and associated tools, which will allow high level system
designers to develop efficient adaptive systems that leverage
FPGA PR, without the need for detailed inputs related to low-
level PR issues and target device architecture. Key design
challenges have been identified and solutions and tools are
being developed. These tools can be integrated with the vendor
supplied tool chain, which makes the solutions portable across
architecture developments.

II. PARTIAL RECONFIGURATION FOR ADAPTIVE SYSTEMS

Presently, the only vendor-supported partial reconfiguration
toolflow is from Xilinx Inc. Altera has announced upcoming
support for PR in their next generation FPGAs. Although
some earlier families of Xilinx FPGAs supported PR, it
became popular with the introduction of the Virtex-5 family of
FPGAs. The Xilinx tool chain supports PR through a software
package called PlanAhead [3]. The current tool flow imposes a
number of limitations that make designing PR-based adaptive
systems difficult. To use this feature effectively, the designer
is expected have considerable knowledge about the target
hardware and the details of PR operations. This is because PR
is treated as an advanced form of floorplanning, as opposed
to having an application-centric view of adaptation.

The main contributions of our proposed work are in two
aspects of enabling PR for adaptive systems design. Firstly,
providing support for system designers with less hardware
expertise at design time, by making the architecture dependent
details transparent and automating PR design implementation.
Secondly, abstracting the runtime PR configuration details to
a higher level. The primary challenge is to automate tasks
that are currently manual, but are required to implement PR
designs, while automatically minimising overheads.

The primary overhead associated with PR is reconfiguration
time. This is the time required for the system to transit from
one configuration to another. In order to develop efficient
PR systems, hardware utilisation needs to be maximised and
reconfiguration time minimised.

Although significant research work has been published on
PR, most does not consider current device architectures. Many
suggested solutions have practical limitations due to recent
FPGA architectures moving away from regular repeating array
structures of basic components to highly sophisticated devices
with built-in macros and hard processors. Throughout our
research, we consider modern FPGA architectures. Our pro-
posed solutions are independent of lower level vendor specific
FPGA design stages such as place and route. Our strategy is
to integrate the solutions with vendor specific tools, so that
the solutions are portable across vendor tools and evolutions
in FPGA architecture. It is also important to note that we are
interested in adaptive systems that react to external events and
hence the sequence and likelihood of adaptation is not known
in advance, unlike systems that use PR to schedule fixed task
graphs.

A. Designing Adaptive PR Systems

We wish to enable system level designers, who are not
FPGA experts, to generate area efficient PR schemes with min-
imal reconfiguration overhead. This work aims at providing
support to the designers during the hardware design stage of
the system. Specifically speaking, we aim to automate several
operations the designers currently have to perform manually,
while not compromising the efficiency of the system. In
fact, intelligent automation can improve system efficiency by
considering multiple optimisation objectives and it also saves
design time.

1) System Partitioning for PR: Our initial task is to de-
velop an efficient partitioning scheme for PR based designs.
The partitioning process involves determining the number of
reconfigurable regions required for design implementation and
assigning modules to these regions. Reconfigurable regions
are areas in the FPGA, where different modules are loaded
at run time. Currently, the number of regions required in
a system and the allocation of design modules to these
regions are determined arbitrarily by the designer. In [4], a
method for minimising the reconfiguration latency based on
communication graphs is presented. However this assumes the
number of regions is pre-determined. Determining the number
of regions is not straightforward, and current devices and tools
do not provide any support in this respect.

B B
conf3 Al E Al Zl
"""""" _ '_"_T'"_"_"_:""",_"_"_"_"_"_'I"
| R || R2 | | R1
L e I

Fig. 1. When assigning modules to separate regions, if some configurations
do not exist, combining modules into a single region can save area.

A recent contribution that explores partitioning and floor-
planning of PR designs is presented in [5]. It describes
a simulated-annealing-based algorithm for determining the
module allocation to regions, based on the minimisation of
area requirement variance at different time instances. It is
difficult to extend this work for adaptive systems because the
algorithm presented uses a scheduled task graph. Moreover
the impact of reconfiguration time is not accounted for in their
method.

The simplest way to partition the FPGA for partial reconfig-
uration is to divide the whole FPGA into two: one static region
and one PR region. This approach has some benefits: the
designer only needs to allocate a single region, large enough to
hold the most resource hungry configuration; and the tools can
optimise area usage and timing across all modules, resulting in
the best possible timing performance and area. However, some
major drawbacks mean this method is not ideal, such as high
reconfiguration time and a large number of bitstreams. Hence,
simply allocating all reconfigurable modules to a single region
is not ideal for systems that rely on minimising reconfiguration
time and bitstream storage.

Generally, a one-region-per-module approach offers the
lowest worst-case reconfiguration times, since a region will
only reconfigure when its sole module needs to, and the size
of the region is only as large as the largest mode of that single
module. However, a one-region-per-module approach is the
least area-efficient way to allocate regions. This is shown in
Fig.1. Here A and B are two modules. A; and A, are different
operating modes of module A and B; and B, are different
operating modes of module B. Modes are mutually exclusive
implementations of the module with the same set of inputs and
outputs. For example, a filter module can have two modes, one
acting as a high-pass filter and one acting as a low-pass filter.
In the possible system configurations, if the largest modes of
the modules do not co-exist, a one-region-per-module scheme
causes resource wastage. This shows that the partitioning of
the design into regions and allocation of modules to those
regions needs to be done intelligently.

We have presented a method for partitioning reconfigurable
modules in [6]. We propose an efficient partitioning tool,
which generates an area efficient partitioning of the adap-
tive system, while minimising reconfiguration overhead. Our

Fig. 2. Example results using the floorplanner. (a) with minimum resource
wastage (b) with minimum wirelength

method takes advantage of the fact that not all possible combi-
nations of different modes of modules will be required by the
system. By considering only possible combinations of modes,
called configurations, efficient partitioning of the design can be
performed. A mathematical formulation is developed, aimed
at minimising the total FPGA resource consumption as well
as the reconfiguration time, while considering the constraints
generated by the FPGA architecture and the PR operation.
The tool also considers the architecture of the target FPGA,
minimising required resources and defining each region in
terms of configuration tiles as required by the implementation
tools. It determines the total number of reconfigurable regions
to use and the allocation of modules to those regions for the
most efficient implementation of the system.

2) Floorplanning for PR: Another important factor con-
sidered during the design stage is floorplanning. For years,
floorplanning was of little concern to FPGA system de-
sign engineers. The available vendor tools were sufficiently
versatile to perform area-constrained placement and routing,
while meeting timing requirements. The introduction of partial
reconfiguration has altered this scenario. The tools currently
available do not perform floorplanning for PR designs auto-
matically, and require considerable input from the designer.
This can be a time consuming activity and the results can be
sub-optimal. Also, manual floorplanning requires the designer
to have FPGA architecture knowledge.

Although some work has been done in this field ([5],
[7], [8]), current solutions have several weaknesses. Most
floorplanning methods suggested in the literature make sim-
plistic architectural assumptions, and hence, are not suitable
for modern devices, due to evolution in device architecture.
The presence of a non-uniform distribution of hard macros
such as DSP slices and Block RAMs as well as the presence
of embedded processors makes automated floorplanning a
challenge. In addition to this, PR brings additional constrains
over floorplanning such as the regions being contiguous and

rectangular in shape, a white space requirement around the
regions for bus-macros, among others. Furthermore, all exist-
ing work we have found, focusses on the static properties of
a particular placement. Hence, the placement is not optimised
for the dynamic behaviour of a partially reconfigurable system.

We have developed an efficient floorplanner, which con-
siders both the costs associated with PR, and the architec-
ture of the FPGA. This algorithm takes into account factors
such as required area for reconfiguration, resource wastage,
wire length, and communication architecture. The floorplanner
minimises the total area of the reconfigurable regions, which
leads to reduced reconfiguration time, while also minimising
the distance between reconfigurable regions, so that the max-
imum achievable frequency is improved. The output of the
floorplanner is a set of area constraints, which specify the
coordinates of the bottom left and top right corners of each
region.

The floorplanning is based on a new method we call
Dynamic Template Matching (DTM). The floorplanner begins
by calculating the resource usage of each region in terms of
reconfigurable tiles. When the floorplanner is integrated with
the previously mentioned partitioning tool, this information is
automatically generated. The floorplanner maintains a database
of FPGA architectures that contains information about the
location of FPGA resources. The locations of hard processors
and transceivers are marked as unavailable in the database.
FPGA resources are then merged to create structures, which
are the basic unit of floorplanning. There will be different
types of structures such as structures with DSP Slices and
Block RAMs, structures with DSP Slices alone, structures with
Block RAMs alone, etc. Basic structures can be merged to
create larger structures.

Regions are floorplanned in terms of the structures based on
a floorplanning schedule. Regions are scheduled for planning
according to their resource utilisation and the weighting factor
given to different resource types, based on their availability in
the target FPGA. After floorplanning each region, the available
type of structures and their numbers vary. The remaining re-
gions can be floorplanned only using the remaining structures.
Hence, we call this Dynamic Template Matching (DTM).
Once the whole design is floorplanned, a weight function
is calculated based on the resource wastage and total wire
length. The floorplanning operation is repeated by considering
different structures and the weight function is recalculated. The
floorplan which generates the least weight value is selected for
final region packing. Two examples of the floorplanner output
are shown in Fig.2

The overall design-time framework for adaptive systems
using partial reconfiguration is shown in Fig.3. The output
of the floorplanner is passed to the vendor-supported PR
tools to generate the necessary bitstreams. In this manner,
as devices evolve and tool capabilities improve, our toolflow
needs minimal adjustment.

B. Managing PR in Adaptive Systems

The design-time contributions detailed above, provide ev-
erything necessary for the PR system to be implemented. How-
ever, true adaptive systems need intelligent management of
adaptation that is typically better done in software. During the
design stage, the proposed tools build necessary infrastructure
and interfaces for the management of PR. During runtime the
system adapts based on operational conditions. Our work in
this area will be develop previous work in [1] and [9].

An adaptive system can be considered as having two planes.
The data plane implements the processing of data, such as the
signal processing in a radio. The system designer uses a high
level tool to describe this based on a library of IP cores. This
is what is partitioned and floorplanned as described in Section
II-A. The control plane implements the management and
control functionalities. This plane is implemented in software
due to its flexibility. The adaptation of the system can take
place at different levels in the data plane:

1) Functional reconfiguration involves completely replac-
ing the functionality of the data plane, e.g., a radio
switching from a passive receiver to a transceiver.

2) Structural reconfiguration involves replacing, removing
or introducing new components in the data plane, e.g.,
a radio changing the modulation scheme.

3) Parametric reconfiguration means modifying a parameter
of one of the components within the data plane, e.g.,
changing the gain of a scaling component.

These adaptations are managed by the control plane by de-
termining the appropriate type of configuration and loading
the corresponding bitstreams or configuring internal register
values. We have shown this technique to be effective for
adaptation in cognitive radios [10]. Current PR tools do
not provide automated support for different levels of recon-
figuration. Adaptation needs to be explicitly coded by the
designer, who must explicitly state which bitstreams to load.
A design framework needs to be developed so that designers
with less hardware expertise can specify complex adaptations
using a high level system specification. From this high level
description, the runtime should be able to enact the appropriate
reconfiguration. The levels of reconfiguration are abstracted
away and should be transparent to the system designer, with
the mapping of adaptation to physical reconfiguration auto-
mated.

This framework is expected to work alongside a library
of application-specific hardware IP modules such as signal
processing libraries for software defined radios. Non-hardware
designers can then use these IP blocks and their own software
adaptation description to fully implement the adaptive system.

III. CONCLUSIONS AND FUTURE WORK

Through this research work, we aim to develop a framework
for adaptive system design using partial reconfiguration. Key
challenging areas and objectives have been identified. An
efficient partitioning algorithm has been developed and ground
work on the floorplanner is already complete. As the next step,

High Level System
Specification
E/ilggaurlf —> Resource estimation Use'r:.IIDesign
iles
> Optimal region allocation Constraints file
Device ¢
Architecture Floorplanner
Library
Vendor Specific
Placer and Router
Fig. 3. Proposed design-time framework for PR based adaptive system.

we are integrating the partitioning tool with the floorplanner
and vendor place and route tools. Specific domains are identi-
fied, for which library components need to be developed. We
believe that the availability of better tools and support will
lead to wider adoption of PR in adaptive systems, for which
we believe FPGAs offer the ideal mix of higher performance
and flexibility.

REFERENCES

[1] S. Fahmy, J. Lotze, J. Noguera, L. Doyle, and R. Esser, “Generic soft-
ware framework for adaptive applications on FPGAS,” in Proceedings of
IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM), 2009.

[2] C. Claus, R. Ahmed, F. Altenried, and W. Stechele, “Towards rapid dy-
namic partial reconfiguration in video-based driver assistance systems,”
Reconfigurable Computing: Architectures, Tools and Applications, vol.
5992, pp. 55-67, 2010.

[3]1 UG702: Partial Reconfiguration User Guide, Xilinx Inc., 2010.

[4] V. Rana, S. Murali, D. Atienza, M. D. Santambrogio, L. Benini, and
D. Sciuto, “Minimization of the reconfiguration latency for the mapping
of applications on fpga-based systems,” in Proceedings of IEEE/ACM
international conference on Hardware/software codesign and system
synthesis (CODES+ISSS), 2009.

[5] A. Montone, M. D. Santambrogio, D. Sciuto, and S. O. Memik,
“Placement and floorplanning in dynamically reconfigurable FPGAs,”
ACM Transactions on Reconfigurable Technology and Systems (TRETS),
vol. 3, no. 4, pp. 24:1-24:34, November 2010.

[6] K. Vipin and S. A. Fahmy, “Efficient region allocation for adaptive
partial reconfiguration,” in Proceedings of the International Conference
on Field Programmable Technology (FPT), 2011.

[7]1 P. Banerjee, M.Sangtani, and S.Sur-Kolay, “Floorplanning for partial
reconfiguration in FPGAs,” in Proceedings of International Conference
on VLSI Design, 2009.

[8] L. Singhal and E. Bozorgzadeh, Multi-layer floorplanning for reconfig-
urable designs. 1ET Computers & Digital Techniques, July 2007, pp.
276-294.

[9] J. Lotze, S. A. Fahmy, J. Noguera, and L. E. Doyle, “A model-based
approach to cognitive radio design,” IEEE J. Sel. Areas Commun.,
vol. 29, no. 2, pp. 455-468, February 2011.

[10] J. Lotze, S. Fahmy, J. Noguera, B. Ozgl, L. Doyle, and R. Esser, “De-
velopment framework for implementing FPGA-Based cognitive network
nodes,” in Proceedings of the IEEE Global Communications Conference
(GLOBECOM), 2009.

