
A Threat Based Connect6 Implementation on FPGA
Kizheppatt Vipin, Suhaib A. Fahmy

School of Computer Engineering
Nanyang Technological University

Nanyang Avenue, Singapore
vipin2@e.ntu.edu.sg, sfahmy@ntu.edu.sg

Abstract—Connect6 is a new generation k-in-a-row game,
which has drawn great interest not only from game enthusiasts
but also from researchers, due to its unique characteristics
such as fairness and high state-space complexity. In this pa-
per we describe the design and implementation of an FPGA-
based Connect6 player that can compete against opponents
by communicating through a serial interface. Our algorithmic
implementation utilises only basic FPGA building blocks such
as LUTs and flip-flops and does not include any IP cores or
hardware macros, making it portable across different FPGA
platforms without design modifications. The design has been
implemented and validated on a Xilinx Spartan-3A FPGA board,
and a Xilinx Spartan-6 board. The algorithm uses a powerful
threat-based placement strategy, which maximises the FPGA’s
winning opportunity while reducing the opponent’s options.
Extended simulation results and evaluation based on software
and human players confirm that our FPGA based implementation
performs well and the algorithm used in the design leads to a
high probability of success.

I. INTRODUCTION

Connect6 was introduced in 2003 by Professor I-Chen Wu at
Department of Computer Science and Information Engineering
of National Chiao Tung University, Taiwan. It is a form of
k-in-a-row game played between two players usually on a
19×19 cell board using black and white stones. The player
with black stones starts the game, placing a single stone. In
all subsequent moves, each player places two stones. The
single-stone first move is designed to increase fairness and
avoid any sort of advantage. The first player to place 6
stones in a row (horizontally, vertically or diagonally) wins
the game. Connect6 has attracted great interest due to its
fairness and higher state-space complexity compared to other
variations of k-in-a-row games. Although several software
based solutions have been developed [1], a complete FPGA
logic-based implementation is challenging, mainly due to the
large solution space.

Like other k-in-a-row games, there are two aspects to
winning a Connect6 game. First is the offensive strategy, which
should ensure that each stone placed increases the chance of
winning, not just locally, but considering the global solution
too. Hence, each stone needs to be placed in such a manner
that it contributes to a current winning sequence. At the same
time, if the current sequence is defended by the opponent, it
should still contribute to some future sequences.

The other strategy is for defence. The player must defend
sequences that would immediately cause the opponent to win,
while also monitoring global placements by the opponent,

which may create serious threats in the future. A good algo-
rithm uses both offensive and defensive moves in proportion
and leads to a high probability of success.

In this paper we describe the design and implementation of
an FPGA based Connect6 player, as a submission to the FPT
2011 Design Competition. Our algorithm uses a threat based
strategy for finding a suitable location for placing each stone.
This design does not use any embedded or soft processors
in the design; it is implemented entirely using logic elements
such as LUTs and flip-flops. The design is coded using the
Verilog hardware description language and has been exten-
sively simulated using Mentor Graphics’ Modelsim simulator
to ensure it is free of glitches. We have also implemented a
Tcl/Tk based GUI that integrates with the simulator, allowing
human players to play against the FPGA logic. Presently the
design is implemented and hardware validated on a Xilinx
Spartan-3 700A-4C FPGA on a Spartan-3A evaluation board
[2] using the Xilinx ISE 13.2 design tool chain. The highly
pipelined and parallel implementation helps the design achieve
a high clock frequency of 79 MHz, even on this relatively low-
end FPGA. The algorithm takes a very short time to make a
move (7 ms in worst case), which also helps, by giving the
opponent minimal time to perform any pre-calculations in a
time-limited game.

The rest of this paper is organised as follows: Section II
discusses the algorithm, Section III describes the architecture
of our system, Section IV presents the simulation results and
performance of our implementation, and Section V concludes
the paper.

II. PLAYING STRATEGIES

This section describes the playing strategies adopted by our
algorithm. The algorithm used is highly effective for both
defensive and offensive moves.

A. Threat

In Connect6, a player is said to have t threats, if the
opponent has to place t stones to prevent the player from
winning in his next move. Fig. 1 shows three example threats
for a player with black stone. The dotted circles represent the
locations, where the opponent has to place stones to preventing
black from winning. Since in each turn a player can place
a maximum of two stones, they can defend only up to two
threats. Hence, the basic winning strategy in this game is to
create at least three threats in one turn.



(a) (b)

(c)

Fig. 1. (a) Single threat, (b) Two threats, (c) Three threats

A simple algorithm is used for detecting threats. Firstly a
one-dimensional window with 6 cells is selected. This is called
a threat window. Defensively, if there are 4 or more opponent
stones and no player stones present within this window, a
threat is present. This is because in the next move, by placing
stones in the empty locations, the opponent can win. The total
number of threats present on the board can be detected by
sliding the threat window in all directions and counting the
threats.

For offence, this same algorithm can also be used to detect
sequences for immediate success. In this case the algorithm
checks for a window with 4 or more of the player’s stones
and no opponent stones. By placing stones in the empty cells,
the player can immediately win the game.

A threat can be defended by disrupting the continuity of
the opponent’s stone placements. By placing a stone at the
rightmost empty cell within a threat detected window, it can
be effectively defended. This lemma is proven in [3].

B. Weight Function

Our algorithm places stones based on the weight function
of the cells. In each turn, a stone is placed at a cell having the
maximum weight. A cell which will lead to immediate success
has the maximum weight value. A cell which can defend a
threat has the next highest weight. This ensures that if there is
an opportunity for immediate success, the FPGA will win the
game. If it is not possible to win immediately, the algorithm
will defend all threats (up to a maximum of two).

If there is neither scope for immediate success nor any
existent threats, placement of stones becomes non-trivial. A
weight function is calculated for each cell and the cell with
maximum weight value is selected for placement. The weight
value for each cell is calculated by considering several factors.

As shown in Fig.2, placing a stone at a location influences
several other cells. In the ideal case, a placement affects 5
nearby cells in all 8 directions. This is because of the fact that
in Connect6, 6 adjacent placements are needed to win. A cell is
given a high weight value, if it can create an additional threat
to the opponent. Threats are critical, since creating three or
more will definitely lead to success. Moreover, creating threats
causes the opponent to defend them, rather than attacking. The
next consideration is preventing the opponent from creating
serious threats in future. For this purpose, the opponent weight
function is calculated as follows. For a cell, the directions
which can contribute to future success of the opponent are
selected. These directions can be found using the previously
described threat window concept. For a direction, if there are

Fig. 2. Calculation cell weight functions.

no player’s stones present with in a threat window, a future
success is possible for the opponent in that direction.

The total weight of the ith cell is calculated as,

Wi =
∑
d

∑
Nd ∗Wd; (1)

where d = 1,2,... the total number of success possible
directions, Nd = the number of opponent stones in direction
d, Wd = the weight for direction d

The weight for a direction (Wd) is proportional to the
number of opponent stones present in that direction. This
makes sure that consecutive placement of several stones in
a single direction will cause a large weight value. In our
algorithm, we consider only the four principle directions, row,
column and the two diagonals for the weight calculation. The
four principle directions are created by merging the collinear
directions among the possible 8 directions. The cell with
maximum weight value due to opponent placement is selected
for placement, only if the opponent weight value is above
a threshold value. This makes sure that the FPGA defends
critical opponent placements and at the same time is not
always stuck with defensive moves.

If the opponent weight value is below the threshold, we con-
sider the player weight function. This is calculated similarly,
but considering the player’s current placement. Placement
is done at the cell with the maximum weight value. This
placement helps in generating future threats to the opponent.

When selecting cells, there can be more than one cell with
the same weight value. In this case a tie-break is required,
based on board weight values. Each cell in the board has a
pre-defined board weight. The cells towards the centre of the
board have higher weight and this decreases towards the edges.
This is because towards the centre of the board, there are more
degrees of freedom in placement directions compared to the
edges. In both defensive and offensive moves, if more than
one cell has the same weight value, the cell with higher board
weight is selected for placement.



UART
Tx Data

Rx Data

 Data Control

Master State Machine

Shadow
Board

Threat Detector

 Data Control

 Data

 Control

Fig. 3. Connect6 system architecture.

III. SYSTEM ARCHITECTURE

The overall system architecture is represented in Fig.3.

A. Master State Machine (MSM)

The MSM module manages the overall functionality of the
system. It interfaces with the UART module, and manages
data reception and transmission operations. It also controls
the internal data storage and gives instructions to the main
algorithmic state machine to calculate different weight func-
tions. The sequence of operations performed by the MSM is
described in Fig.4. Initially the system waits for the referee’s
signal to start the game. If the FPGA is playing with black
stones, a single stone is placed at the location with the
maximum weight function. Since at this point of time, no
previous placements are present, both opponent and FPGA
cell weights will be zero. Hence the placement will be at
a location with maximum board weight, i.e. (10,10). If the
FPGA is playing white, initial placement is done very close
to the opponent placement. For all the subsequent placements,
weight functions are calculated and placement is performed as
described in section II.

B. UART

The UART module is used for receiving and transmitting
data through an RS232 interface. It is configured at a baud
rate of 115200, with 8-bit data, no parity and 1 stop bit.
This module also contains an internal buffer to preventing data
overflow.

C. Shadow Board

The shadow board is a representation of the actual playing
board. It contains a 19×19 array of distributed memory
elements, with each element being capable of storing two
bits. A memory element contains the information such as
whether the corresponding cell in the playing board is vacant,
occupied by an FPGA stone or occupied by an opponent stone.
Whenever the FPGA receives or transmits information about
placing a stone, it is updated in the shadow board by the MSM.

PLACE A SINGLE STONE

PLACE THE STONE

FPGA IS PLAYING
BLACK ?

WAIT FOR THE COLOUR 
INDICATION

WAIT FOR OPPONENT
MOVE

SUCCESS POSSIBLE?

THREAT DETECTED?

MOVES REMAINING ?

STOP CHECK FOR THREAT

DEFEND THREAT

PLACE A SINGLE STONE

START

YES

NO

YES

NO

YES

NO

YES

NO

Fig. 4. Connect6 flowchart.

D. Threat Detector

The threat detector (TD) implements the main algorithm.
The TD detects immediate winning sequences, immediate
threats as well as the weight value for each cell. Taking
advantage of parallel execution of hardware elements, imme-
diate winning sequences and immediate threats are detected
concurrently. If there is an immediate winning sequence,
TD indicates this to the MSM with the corresponding cell
locations. In the absence of this sequence, it indicates the
locations of the cells, where defensive placements are required.
If both the cases are absent, it finds the cell with maximum
weight value and intimates the MSM.

IV. PERFORMANCE
A. Implementation

The design has been implemented on different FPGA plat-
forms to confirm its portability, using Xilinx ISE-13.2 tool
chain. Implementation results are shown in Table-I. For the
Spartan-6 FPGA, required area is smaller due to its 6-input
LUT architecture, while the improved fabric results in a better
maximum frequency. Currently it is hardware-validated on
Spartan-3A evaluation board to demonstrate its capabilities
even on a low end board. On this platform, the design uses
37% of the available Slices in the FPGA. Due to pipelined
implementation, our design is able to achieve a high clock
frequency of 79MHz. Currently the FPGA is running at the
on-board clock frequency of 50MHz.

B. Simulation

The design has been simulated and verified using Mentor
Graphics’ Modelsim-SE 6.6 simulator. To check the entire



TABLE I
IMPLEMENTATION RESULTS ON DIFFERENT FPGAS

FPGA Resouce type
Fmax(MHz)FFs LUTs Slices

Spartan 3 700A-4 3329 1615 2211 79
Spartan 6 LX45-3 1405 2392 789 130
Virtex 5 FX70T-3 1471 2168 943 175

board for the presence of a winning sequence or threats, the
system takes 1.66 ms (8300 clock cycles). To calculate the
weight value of every cell on the board, the system takes 2.56
ms (12800 clock cycles). Hence, the worst case scenario –
when the FPGA has to place two stones based on the weight
values of the cells, due to the absence of winning sequences
and threats – is 6.78 ms (33900 clock cycles). The weight
values are recalculated prior to placement of the second stone,
since the first placement can influences up to 40 other cells.
A possible improvement would be to restricting the updating
of weights to within the influenced region.

C. Testing
The FPGA implementation has been tested against several

opponents. Against the provided software host, our FPGA
implementation wins in all cases, playing as both black and
white, as shown in Table-II. Note that the number of moves

TABLE II
FPGA LOGIC VS HOST SW

No. of Games FPGA Col. FPGA Win SW Win Avg. Moves
25 Black 25 0 58
25 White 25 0 57

represent the total number of (both FPGA and opponent)
stones present on the board, when the game ends. Due to
the random placement nature of the software, the number of
moves required is different in each game. In the best case, the
FPGA was able to beat the software in 22 moves and in the
worst case it took 206 moves. On average, the FPGA takes 58
moves to beat the host software whatever colour it plays.

For more extensive testing, a Tcl/Tk GUI was developed
(Fig.5), which was configured to directly interface with the
simulator. This allows humans to play against the FPGA
logic. The design was tested against a Java-based Connect6
implementation [4] that has different expert levels. The FPGA
design lost only against an advanced level opponent, and only
when playing with white stones, as shown in Table-III.

TABLE III
FPGA LOGIC VS JAVA SW

SW Level FPGA Col. Winner Avg. Moves
Random Black FPGA 15
Random White FPGA 11
Simple Black FPGA 25
Simple White FPGA 23
Hard Black FPGA 53
Hard White FPGA 26

Advanced Black FPGA 35
Advanced White S/W 35

With the help of the GUI, a number of students of different
expertise levels were encouraged to play against the FPGA

Fig. 5. Connect6 GUI.

logic, including some seasoned experts. In most cases, the
FPGA design was able to win.

TABLE IV
FPGA LOGIC VS HUMAN PLAYERS

No. of Games FPGA Col. FPGA Win Human Win
25 Black 20 5
25 White 22 3

As a final test, one instance of the FPGA design was played
against another instance of the same design. This led to a tie,
with all the cells in the board getting filled. This proves that
FPGA logic can play equally well using both black and white
stones.

V. CONCLUSION

In this paper we described the implementation of a Connect6
player on an FPGA. The threat-based algorithm used proves
to be very effective in achieving a high rate of success, and
is amenable to hardware acceleration. One immediate aim
is to improve the speed and performance of the system. In
the current design, the shadow board (SB) implementation
using distributed memory results in a large combinational logic
block. This logic is the main limiting factor in achieving higher
clock speed. By moving the SB to Block RAMs, we expect
to improve the maximum clock frequency with minimal effect
on architecture dependency, as modern FPGAs all have Block
RAMs. Increasing system frequency above the board default
oscillator using a Digital Clock Manager (DCM) can further
reduce the total time taken for placements. We are interested
in seeing how we could incorporate non-determinism in the
selection of the moves to play in a future version, in order to
allow more paths to winning. In a future implementation, we
intend to incorporate advanced cell searching methods such as
the one described in [5].

REFERENCES

[1] connect6 org. [Online]. Available: http://www.connect6.org/
[2] Xilinx Inc., ug334, June 2008. [Online]. Available:

http://www.xilinx.com/
[3] I. C. Wu and D. Y. Huang, “A new family of k-in-a-row games,” in

Proceedings of The 11th Advances in Computer Games (ACG11), 2006.
[4] K. Verhoef. [Online]. Available: http://kevinverhoef.nl/connect6.htm
[5] I. C. Wu and P. H. Lin, “Relevance-zone-oriented proof search for

connect6,” IEEE Transactions on computational intelligence and AI in
games, vol. 2, pp. 191–207, 2010.


