Automated Partial Reconfiguration Design for Adaptive Systems
with CoPR for Zynq

Kizheppatt Vipin, Suhaib A. Fahmy
School of Computer Engineering
Nanyang Technological University, Singapore
{vipin2,sfahmy} @ntu.edu.sg

Abstract—Dynamically adaptive systems (DAS) respond to
environmental conditions, by modifying their processing at
runtime and selecting alternative configurations of computa-
tion. Field programmable gate arrays, with their support for
partial reconfiguration (PR) represent an ideal platform for
implementing such systems. Designing partially reconfigurable
systems has traditionally been a difficult task requiring FPGA
expertise. This paper presents a fully automated framework
for implementing PR based adaptive systems. The designer
specifies a set of valid configurations containing instances of
modules from a standard library. The tool automates parti-
tioning of modules into regions, floorplanning regions on the
FPGA fabric, and generation of bitstreams. A runtime system
manages the loading of bitstreams automatically through API
calls.

I. INTRODUCTION

Dynamically adaptive systems (DAS) are systems that
continuously monitor their environment and adapt their
behaviour in response to changes in environmental con-
ditions [1]. A DAS can be considered as a collection of
different system operating modes, called configurations, of
which only one is active at a given point in time. At
runtime, changes in the operating environment can cause
a DAS to switch its configuration to adapt. This switching
operation, called reconfiguration, is controlled and managed
by a configuration manager (CM) that monitors parameters
and applies adaptation algorithms.

In this context, FPGA partial reconfiguration (PR) is a
promising enabler. PR is the process by which a part of the
FPGA configuration memory can be overwritten at runtime,
thus modifying the behaviour of parts of the chip, while the
remainder continues to function. This capability, formerly
only offered for high-end FPGAs, is now supported across
most FPGAs from Xilinx [2], and recently Altera has also
begun offering it [3].

Building a partially reconfigurable system entails a num-
ber of design decisions. The first is a definition of regions
on the device called partially reconfigurable regions (PRRs),
for each of which, we must generate a set of valid bitstreams
to be loaded at runtime. The second is the mechanism by
which such bitstreams are stored and loaded at runtime. The
final aspect is some control that manages the reconfiguration
at runtime to meet overall application requirements.

Much PR design research has targeted the use of PR for
time multiplexing a fixed set of tasks within a constrained
reconfigurable area. In such cases, the management of the
system at runtime is simple, and the sequence of reconfigura-
tion can be determined in advance. In DASs, the adaptation
mechanisms can be complex, and respond to unpredictable
environmental conditions, and are part of what the ap-
plication designer would develop. Although models have
been proposed for mapping adaptive system descriptions
to FPGAs, actual implementation of the resulting systems
remains challenging [4], [5], [6], [7]. A fully automated
flow that allows adaptive systems designers with minimal
hardware expertise to map applications to a PR design has so
far failed to materialise. We believe this is an essential step in
PR achieving more widespread adoption, with applications
that move beyond the small examples typically encountered
in PR literature.

New hybrid configurable platforms such as the Xilinx
Zynq offer new opportunities for DAS implementation as
they tightly integrate processor cores with a reconfigurable
fabric. The compute intensive data processing configurations
can be implemented on the reconfigurable fabric while com-
plex adaptation algorithms can be implemented in software,
making them easily programmable. CoPR is the first fully
automated flow for mapping high-level descriptions of adap-
tive systems to hybrid FPGAs. This framework can equally
serve as the implementation basis for other techniques that
require PR functionality.

II. MAPPING DYNAMICALLY ADAPTIVE SYSTEMS

We now discuss the different aspects of a DAS and how
they are mapped onto a hybrid-FPGA platform in the CoPR
framework.

A. System Decomposition

The system level architecture for DAS we have chosen
is depicted in Figure 1. The overall system is divided into
two logical planes, namely the control plane and the data
plane. The configurations, that complete data processing,
reside within the data plane while the control plane monitors
and regulates system state, managing reconfiguration. The
data plane can support intensive computation by mapping

External

Event 3 Control loop

Control plane
Event Action

Data In | @ @ @ @ | Data Out

Data plane

Figure 1. The control and data planes of a DAS.

it to the hardware fabric. Meanwhile, the control plane
typically functions at a much lower data rate, but might use
complex sequential algorithms, and is hence more suitable
for software implementation.

A data plane configuration is composed of several func-
tional units such as Mj, My, M3 and M, interfaced with
each other, as shown in Figure 1. We define the atomic
functional unit as a module. Each module may have a set
of parameters which determine its operating characteristics.
These parameters can be modified at runtime to control the
modules and thus the data plane behaviour.

The control plane implements the DAS configuration
manager (CM). The CM monitors and regulates system
state by implementing the observe, decide, act loop (control
loop) [8]. The loop constantly monitors the system envi-
ronment to detect changes in operating conditions called
events. These events are analysed to decide whether changes
in system state are required and how to reach the intended
state through actions.

B. Modelling Adaptation

A set of modules in the data plane which implements a
mode of functionality is called a configuration. For example,
{My, My, M5, M4} in Figure 1 comprise a system config-
uration. When the system adapts to a new operating state,
the configuration changes by replacing one or more modules
with new ones. This is called a structural reconfiguration.

In another scenario, modifications to the system operating
characteristics are achieved by modifying one or more
parameters of the modules without physically replacing
them. This is a parametric reconfiguration. Ideally a system
designer should be able to model both these types of
reconfiguration in a way that suits the applications without
worrying about how they are actually implemented.

C. Zynq Architecture

New hybrid reconfigurable devices, such as the Xilinx
Zynq are an ideal choice for implementing such systems as
they include a powerful processor, standard communication
infrastructure, and integrated reconfigurable fabric [9]. The
Zyngq tightly couples a dual-core ARM Cortex A9 processor

with a reconfigurable fabric. The ARM processor communi-
cates with on-chip memory, memory controllers, and periph-
erals through AXI interconnect. Together, these hardened
blocks constitute the Processor System (PS). The on-chip PS
is attached to the Programmable Logic (PL) through multiple
AXI ports, offering high bandwidth between the two key
components of the architecture. The processor configuration
access port (PCAP) in the PS supports full and partial
configuration of the PL.

Optimising PR based designs requires a solid understand-
ing of the underlying configurable fabric architecture. Like
other Xilinx FPGAs, the Zynq configurable fabric (PL) is
divided into rows and columns. A file is one row high and
one column wide, and contains a single type of resource
such as CLBs or Block RAMs. The basic unit for defining
a partially reconfigurable region (PRR) is a tile and a tile
should not be shared between multiple regions. Present
partial reconfiguration tool flows require the designer to
know these low level architecture details for system imple-
mentation and optimisation. In the CoPR flow, these details
are abstracted away from the designer’s point of view but
are used internally by the tool to optimise implementation.

D. Architecture Mapping

The DAS data plane is implemented on the Zynq PL
and structural reconfiguration is achieved by configuring
PRRs with appropriate partial bitstreams. The control plane
is implemented as two logically separate software compo-
nents called the adaptation manager and the configuration
manager running on the ARM processor. The adaptation
manager is software written by the system designer that
implements the control loop discussed in Section II-A in an
implementation-independent format. It communicates with
the configuration manager through APIs provided by the
CoPR framework. The configuration manager performs the
implementation dependent structural and parametric recon-
figurations by loading partial bitstreams or varying module
register contents.

An important factor in data plane implementation is inter-
module communication. We adopt an AXI4-Stream based
interface for high throughput inter-module communication.
IP cores from Xilinx as well as modules generated using
high-level synthesis languages such as Vivado HLS support
this interface.

For communication between the control and data planes,
a lightweight interface is required for parametric reconfigu-
ration by modifying module registers. AXI4-Lite is ideal for
this and is supported between the Zynq PS and PL.

III. TooL FLow

Figure 2 shows the CoPR tool flow. The flow includes
both software and hardware, accepts user specifications,
applies optimisation algorithms, and interfaces with vendor

Module
Library

Configuration
Specification

Adaptation
Specification

Adaptation
APIs

Resource calculation

Partitioning
config.
Manager

’ Floorplanning ‘

¢ Software integration

Reconfig. Hardware Integration
Controller
! v

’ PAR and BitGen ‘

Software compilation

Bitstreams Software executable
Hardware Flow Software Flow
DUser DVendor tools DFramework

Figure 2. CoPR tool flow for PR based adaptive systems design, showing
steps performed by the user, vendor tools, and framework.

tools through a set of custom scripts. The following sections
describe each step in detail.

A. Specification

The primary designer inputs to CoPR are the configuration
and adaptation specifications. The configuration specifica-
tion details the different valid DAS configurations and the
corresponding library modules present in each configuration,
and is described in XML format as shown in Figure 3. Each
configuration has an associated name and the modules are
listed in the order they appear in the processing chain.

The configuration specification also lists the possible pa-
rameter values for each module. Module parameters can be
changed at runtime, and this can lead to a PR reconfiguration
or the setting of a register value. The tool automatically
analyses the parameter definitions and elaborates the con-
figuration specification to include additional configurations
resulting from parametric reconfiguration of the system.

The adaptation specification contains the software code
for the adaptation manager implementation. This is written
by the designer using the functions offered by the CoPR
API, without reference to the implementation details, instead
referencing the labels in the configuration specification.

CoPR first uses the vendor synthesis tool (XST) to synthe-
sise all modules to determine resource requirements. Scripts
extract the resource requirements from the synthesis reports
and these numbers are later used for design partitioning and
floorplanning.

B. Partitioning and Interface Generation

Partitioning determines the number of reconfigurable re-
gions (PRRs) and allocates modules to them. The way
the system is partitioned greatly influences the resource

1 <configurations>
2 <config name="tx_chain">
3 <module name="encoder">
4 <parameter standard="encl"/>
5 </module>
6 <module name="modulator">
7 <parameter standard="modl"/>
8 </module>
9 </config>
0 <config name="rx_chain">
1 <module name="demodulator">
2 <parameter standard="dmodl1l"/>
3 </module>
4 <module name="decoder">
5 <parameter standard="dcodl"/>
6 </module>
7 </config>
8 ..
9 </configurations>
Figure 3. Configuration specification in XML format. Each configuration

is specified by its name and the list of modules.

requirements and reconfiguration time. Our algorithm [10]
partitions the design in such a way that the total recon-
figurable area is minimised. System configurations play an
important role here, as they greatly reduce the number of
module combinations that must be considered to arrive at
an efficient allocation.

The partitioning algorithm initially clusters modules based
on how often they occur together in a configuration. Clusters
of co-occuring modules are identified, and then compatible
sets are found, where the modules in compatible clusters
are not required in a single configuration. These compatible
clusters can be swapped in a single region, ensuring that
all configurations are covered by the compatible clusters
assigned to all regions. The final output of partitioning is
a list of PRRs and the corresponding partition allocation to
them.

After partitioning, wrappers that instantiate the required
modules are generated for each PRR, ensuring a unified
interface across different configurations. A pr_system_top
wrapper is also generated which instantiates and connects
all the PRRs as black boxes. The generated wrapper module
is in IP core format, which can be directly imported into
Xilinx’s XPS tool flow.

C. Floorplanning

Floorplanning involves determining the physical locations
of the PRRs on the PL fabric. Regions must be rectangular
in shape and not overlap. As discussed in Section II-C, the
basic unit for floorplanning is a tile. Since each tile is one
device row high, the height of PRRs is an integer multiple
of device rows.

The resource requirements for each PRR are converted
to the corresponding number of tiles with an added 10%
margin to avoid routing congestion during implementation.
Our approach, adapted from [11], uses resource templates
that encode the horizontal arrangements of tiles on the target
architecture, as shown in Figure 4. To satisfy the resource

E IBRAM Tile

Figure 4. Resource templates, which are tiled vertically to satisfy PRR
resource requirement during floorplanning.

requirements of a PRR, templates containing all the required
types of tiles can be stretched vertically until the required
size is achieved. The final output of floorplanning is a user
constraints file (ucf) specifying the coordinates of the PRRs.

D. Hardware Integration

At this stage the designer can add the outputs of parti-
tioning (pr_system_top wrapper) and floorplanning (ucf file)
to a Zynq embedded project using the Xilinx XPS software.
Although this step can be automated, user intervention offers
flexibility to choose additional system peripherals.

The designer can choose to use either the PCAP or
our higher performance ZyCAP controller [12] that triples
reconfiguration speed at the cost of modest resource usage.

E. Place and Route and Bitstream Generation

The designer now runs the automation scripts which
direct the vendor placement and routing tools, then the
bitstream generation tool to generate all the necessary partial
bitstreams and the full system bitstreams. The most resource
intensive configuration is implemented first since the quality
of static region routing depends upon the first configuration
implemented. The partial bitstreams must then be copied to
an SD card which is inserted in the board.

F. Software Implementation

As described in Section III-A, the adaptation specification
is programmed by the user, referring to the configurations
defined in the configuration specification. Presently it is
written in C compatible with the Zynq ARM compiler.
The framework automatically generates the configuration
manager (CM) based on the configuration specification and
the output of the partitioning step.

APIs are provided for determining the present con-
figuration (get_config()) and for changing configuration
(set_config(configuration_name)). The designer does not
need to know which partial bitstream corresponds to which
configuration or where they are stored. The configura-
tion_name used in the API is the same as the one specified
by the user in the configuration specification file. APIs
are also provided for accessing hardware module param-
eters (get_param(module,parameter)) and modifying them
(set_param(module,parameter,value)). Changing parameters

sometimes leads to the reconfiguration of modules, which is
automatically handled by the CM.

IV. CONCLUSION AND FUTURE WORK

We have introduced the CoPR framework for the design of
dynamically adaptive systems using partial reconfiguration.
It accepts a high-level description of an adaptive system, au-
tomatically partitions the design into reconfigurable regions,
determines a floorplan and generates bitstreams. Runtime
adaptation control is also automatically generated, isolating
the designer from the low-level aspects of the implementa-
tion.

Presently, the reconfiguration manager is implemented for
the Stanalone operating system, and we are working to add
support for Linux. The automation scripts are also being
modified to work with the new Xilinx Vivado tool flow.

REFERENCES

[1] B. H. Cheng, P. Sawyer, N. Bencomo, and J. Whittle, “A
goal-based modeling approach to develop requirements of an
adaptive system with environmental uncertainty,” in Model
Driven Engineering Languages and Systems. Springer Berlin
Heidelberg, 2009, vol. 5795, pp. 468-483.

[2] UG702: Partial Reconfiguration User Guide, Xilinx, 2010.

[3] M. Bourgeault, “Altera’s partial reconfiguration flow,” Altera,
Tech. Rep., 2011.

[4] T. Bapty, S. Neema, J. Scott, J. Sztipanovits, and S. Asaad,
“Model-integrated tools for the design of dynamically recon-
figurable systems,” VLSI Design, vol. 10, no. 3, pp. 281-306,
2000.

[5] M. Santambrogio, V. Rana, and D. Sciuto, “Operating system
support for online partial dynamic reconfiguration manage-
ment,” in Proc. of International Conf. on Field Programmable
Logic and Applications (FPL), 2008, pp. 455-458.

[6] J. Lotze, S. Fahmy, J. Noguera, and L. Doyle, “A model-
based approach to cognitive radio design,” IEEE Journal on
Selected Areas in Communications (JSAC), vol. 29, no. 2, pp.
455-468, Feb. 2011.

[7] J. Vidal, F. De Lamotte, G. Gogniat, J.-P. Diguet, and S. Guil-
let, “Dynamic applications on reconfigurable systems: from
UML model design to FPGAs implementation,” in Proceed-
ings of Design, Automation and Test in Europe (DATE), 2011.

[8] J. Mitola and G. Q. Maguire, “Cognitive radio: making soft-
ware radios more personal,” I[EEE Personal Communications,
vol. 6, no. 4, pp. 13-18, 1999.

[9] UG585: Zyng-7000 All Programmable SoC Technical Refer-
ence Manual, Xilinx, Mar. 2013.

[10] K. Vipin and S. A. Fahmy, “Automated partitioning for partial
reconfiguration design of adaptive systems,” in Proceedings
of the IEEE International Symposium on Parallel and Dis-
tributed Processing Workshops and PhD Forum (IPDPSW),
Boston, MA, 2013, pp. 172-181.

[11] K. Vipin and S. A. Fahmy, “Architecture-aware
reconfiguration-centric floorplanning for partial
reconfiguration,” in Proceedings of the International
Symposium on Applied Reconfigurable Computing (ARC),
2012, pp. 13-25.

[12] K. Vipin and S. A. Fahmy, “ZyCAP: Efficient partial recon-
figuration management on the Xilinx Zynq,” IEEE Embedded
Systems Letters (to appear), vol. 6, 2014.

