
IEEE EMBEDDED SYSTEMS LETTERS, VOL. X, NO. X, JAN XXXX 1

ZyCAP: Efficient Partial Reconfiguration
Management on the Xilinx Zynq

Kizheppatt Vipin, Student Member, IEEE, and Suhaib A. Fahmy, Senior Member, IEEE

Abstract—New hybrid FPGA platforms that couple processors
with a reconfigurable fabric, such as the Xilinx Zynq, offer
an alternative view of reconfigurable computing where software
applications leverage hardware resources through the use of often
reconfigured accelerators. For this to be feasible, reconfiguration
overheads must be reduced so that the processor is not burdened
with managing the process. We discuss partial reconfiguration
(PR) on these architectures, and present an open source con-
troller, ZyCAP, that overcomes the limitations of existing meth-
ods, offering more effective use of hardware resources in such
architectures. ZyCAP combines high-throughput configuration
with a high-level software interface that frees the processor from
detailed PR management, making PR on the Zynq easy and
efficient.

Index Terms—Reconfigurable computing, field programmable
gate arrays, accelerator architectures.

I. INTRODUCTION

HYBRID FPGAs integrate capable embedded processor
cores with a reprogrammable fabric, bringing together

software and custom hardware in a manner that makes recon-
figurable computing attractive beyond its traditional support
base. A software-centric view, but one in which complex
computation can be offloaded to custom hardware accelerators,
has long interested the reconfigurable computing community,
and hence such coupling has been explored in the past. The
advent of devices such as the Zynq from Xilinx [1], integrating
ARM processors with a reconfigurable fabric, suggests that
this view will begin to dominate.

In this paper, we explore how partial reconfiguration (PR)
can be exploited efficiently on such architectures. Traditional
approaches have often assumed a dedicated processor for
managing the PR process, yet it is expected that managing
PR in such systems will now be just one of the embedded
processor’s many tasks, and hence this must be done in a way
that does not impact overall system performance. Fig. 1 shows
a simplified block diagram of Xilinx Zynq architecture. The
programmable logic (PL) is attached to the processing system
(PS) through multiple ARM AMBA AXI ports, offering high
bandwidth coupling between them: two 32-bit AXI master
(GP master) interfaces; two 32-bit AXI slave (GP slave)
interfaces, and four 64-bit high-performance AXI slave (HP)
interfaces. The processor configuration access port (PCAP)
interface enables full and partial reconfiguration of the PL
from the PS.

Manuscript received Feb 04, 2014; revised March 22, 2014.
K. Vipin and S.A. Fahmy are with the School of Computer En-

gineering, Nanyang Technological University, Singapore 639798 (e-mail:
vipin2@ntu.edu.sg; sfahmy@ntu.edu.sg)

Fig. 1. Zynq Architecture showing PS, PL and the interconnects.

Unlike previous FPGAs with hard processors requiring
significant infrastructure in the programmable logic, the Zynq
PS is fully capable, and the PL is viewed as an auxiliary
resource that can be used to improve application performance.
We now consider software applications making use of a pro-
grammable fabric to implement accelerators, rather than the PL
implementing a self-contained system with some processors
for support.

When we factor in that the available PL area is somewhat
restricted, we envisage the use of the PL to implement a
variety of small accelerators, with the processor loading them
dynamically as needed. PR becomes essential as it enables
such a time-multiplexed use of the PL, increasing effective
logic capacity, while also contributing to improved power con-
sumption and reduced configuration overhead, when compared
to static approaches.

Within this new paradigm, it is essential that the overhead
of managing PR does not compromise the other tasks being
undertaken by the processor; inefficient PR management can
significantly diminish any acceleration benefits. Currently sup-
ported methods of PR management on the Zynq fail to address
this issue. Our previous work demonstrated that custom recon-
figuration controllers can considerably reduce reconfiguration
overhead in non-processor based systems [2]. In this paper,
we present a new open-source reconfiguration controller and
associated driver that significantly improve reconfiguration
throughput in the Zynq while freeing the processor to work
on other tasks. Aside from improving performance, it also
simplifies the management of PR processes through a high-
level driver interface.

II. PARTIAL RECONFIGURATION

Partial reconfiguration (PR) design involves defining regions
on the FPGA, called partially reconfigurable regions (PRRs),
which can house different modules and can be dynamically



IEEE EMBEDDED SYSTEMS LETTERS, VOL. X, NO. X, JAN XXXX 2

Setup Config Control DataIn Compute DataOut

Tsetup Tconfig Tcontrol Tdatain Tcompute Tdataout

Fig. 2. Task profile for implementing hardware acceleration [4].

changed at runtime by loading a partial bitstream [3]. Though
Zynq supports full reconfiguration of the PL from the PS, PR
still offers several advantages. Firstly, during a full reconfigu-
ration, the entire PL is out of use. Secondly, in a system with
multiple independent accelerators, a full reconfiguration forces
reconfiguration of all of them even if not required. This is
especially troublesome if the software drivers must re-initialise
them each time a configuration is completed. Finally, in cases
where the PL is being used to connect external peripherals,
such as sensors or actuators, a reconfiguration breaks this link.
PR overcomes all these limitations, and is hence a key enabler
for this paradigm of reconfigurable computing.

To understand the impact of PR on system performance,
consider the typical profile for an accelerator task as depicted
in Fig. 2. The system configures the accelerator on the fabric,
sends input data, triggers execution, then reads back the output
after execution. Tsetup is the time taken to decide whether a
reconfiguration is required, Tconfig is the reconfiguration time,
Tcontrol is the time taken to trigger the accelerator, Tdatain

is the time to send data to the accelerator, Tcompute is the
accelerator execution time and Tdataout is the time for the
results to be read back. This profile shows that efficient man-
agement functions are paramount in maximising the benefits
offered by acceleration. Tdatain and Tdataout depend upon
the system architecture and how data movement is managed.
Tcontrol is usually negligible, involving register configurations.
A PR system should minimise Tsetup , while also maximising
reconfiguration throughput to minimise Tconfig . If the proces-
sor is used to manage all the reconfiguration steps, then it is
not available for other tasks. This is especially true when the
number of accelerator tasks and frequency of reconfiguration
increases [5].

The desire is that the processor handles only high-level
reconfiguration management while the lower level mechanics
are managed separately. The advantage of this approach is
that execution of tasks on the processor and reconfiguration
of the PL can be overlapped. Fig. 3 shows the profile for
an application comprising two software and two hardware
tasks executed alternately. In Fig. 3(a), the processor manages
configuration, and so must wait for this to complete before
executing its software tasks. Fig. 3(b), shows how the overall
execution time is reduced when the processor is only tasked
with initiating the reconfiguration. The reconfigurable region
can be blanked when no accelerator is used to reduce power
consumption without compromising system performance. In
Fig. 3(c) we show the potential gains for independent tasks;
now that the processor is freed from low-level configuration
management, it can continue with other tasks (subject to
dependencies).

Now let us consider the impact of PR on system power
consumption. Since the size of partial bitstreams can be
significantly smaller compared to a full bitstream, the power
consumed for reconfiguration can be lower for PR, due to
shorter reconfiguration time.

Processor Task 1 C1 Idle Task 2 C2 Idle

Execution time

Accelerator Idle C1 Task1 Idle C2 Task2

(a)
Processor Task 1 Idle Task 2 Idle

Accelerator Blnk C1 Task1 B Blnk C2 Task2

(b)
Processor Task 1 Task 2 Idle

Accelerator C1 Task1 C2 Task2

(c)
Fig. 3. Effect of overlapping hardware and software execution. (a) Processing
and reconfiguration happening sequentially. (b) Reconfiguration in parallel
with processing for dependent tasks. C1 and C2 represent accelerator recon-
figurations and B represents blanking the PRR. (c) Software and accelerators
running independent tasks with minimal software management overhead.

PR has also been used to save power by blanking unused
PRRs with blank bitstreams. For PR blanking of a region to
provide an energy saving, it is required that [6]:

Treconfig > Ppr × Sbit/Pext × tinactive (1)

where Ppr is the power consumption for PR, Sbit is the
bitstream size, Pext is the power consumed to transfer the
partial bitstream from external memory to the FPGA and
tinactive is the time for which a PRR remains inactive. Hence,
maximising reconfiguration throughput (Treconfig ) increases
potential power savings.

III. PARTIAL RECONFIGURATION MANAGEMENT ON THE
ZYNQ

In this section we discuss existing Zynq PR schemes, and in-
troduce a custom PR controller that overcomes the limitations
of these methods. The PL can be reconfigured from the PS or
from within the PL itself. The PS uses the device configuration
interface (DevC), which has a dedicated DMA controller to
transfer bitstreams from external memory to the processor
configuration access port (PCAP) for reconfiguration. The
Zynq also has an internal configuration access port (ICAP)
primitive in the PL, as found in other Xilinx FPGAs. The
ICAP has a 32-bit, 100MHz streaming interface, providing up
to 400MB/s reconfiguration throughput.

A. State of the art

Officially Xilinx supports two schemes for PR on the Zynq,
one through the PCAP and the other through the ICAP. By
specifying the starting location and size, the library function
XDcfg TransferBitfile() can be used to transfer PR bitstreams
from external memory (DRAM) to the PCAP. The main
advantage of this scheme is that it does not require any PL
resources and gives a moderate reconfiguration throughput of
128MB/s. The main drawback is that it blocks the processor
during reconfiguration, precluding overlapped reconfiguration
as discussed in Section II.

Xilinx also provides an IP core (AXI HWICAP) and library
function (XHwIcap DeviceWrite()) to enable PR using the
ICAP. The AXI-Lite interface of the core is used to connect it
to the PS through a GP port. Since this method is not DMA



IEEE EMBEDDED SYSTEMS LETTERS, VOL. X, NO. X, JAN XXXX 3

Fig. 4. ZyCAP showing interface connections.

based, throughput is only 19MB/s. This approach also blocks
the processor, and is hence inferior to the PCAP approach.

We have modified the ICAP approach by interfacing the
hard DMA controller in the PS with the AXI HWICAP IP and
writing a custom driver function. An interrupt from the DMA
controller is used to indicate completion of reconfiguration.
The achievable throughput in such a case is 67MB/s, which
is significantly slower than through the PCAP. Since the
AXI HWICAP IP has a single AXI-Lite interface, it is not
possible to connect it to the HP port for better performance.
However, this scheme has an advantage that reconfiguration
can be overlapped with processing.

B. ZyCAP PR Management

To achieve maximum performance, we have developed a
custom controller, called ZyCAP, and an associated driver,
to verify whether such a solution can improve on PCAP
performance, while reducing processor PR management over-
head. Previous experiments with traditional FPGAs showed
that a custom solution can provide near theoretical peak
reconfiguration throughput [2]. But such custom controllers
were designed for non-processor systems, and hence did not
provide a software-centric view or run-time reconfiguration
management, making them difficult to port to the Zynq.

ZyCAP has two interfaces, an AXI-Lite interface connected
to the PS through a GP port and an AXI4 interface connected
to an HP port as shown in Fig. 4. Since it adheres to Xilinx’s
pcore specification, ZyCAP can be used like other IP cores
in Xilinx XPS. Internally, ZyCAP instantiates a soft DMA
controller, an ICAP manager and the ICAP primitive. The
DMA controller is configured with the starting address and
size of the PR bitstream through the AXI-Lite interface and
bitstreams are transferred from external memory (DRAM) to
the controller at high speed through the HP port using the
burst-capable AXI4 interface. The ICAP manager converts
the streaming data received from the DMA controller to the
required format for the ICAP primitive. ZyCAP raises an
interrupt once the bitstream has been fully transferred to the
ICAP.

ZyCAP achieves a reconfiguration throughput of 382MB/s
(95.5 % of the theoretical maximum), improving over
AXI HW ICAP, DMA based AXI HW ICAP, and PCAP
by 20×, 5.7×, and 2.98×, respectively. The deviation from
theoretical maximum is due to the software overhead for DMA
controller configuration, DRAM access latency and interrupt
synchronisation. A comparison of different PR methods in
terms of resource utilisation and reconfiguration throughput
is shown in Table I.

TABLE I
COMPARISON OF RESOURCE UTILISATION FOR DIFFERENT PR METHODS

ON THE ZYNQ.

Method Resource Utilisation Throughput
FFs LUTs BRAMs (MBytes/sec)

PCAP 0 0 0 128
Xilinx ICAP (non-DMA) 443 296 0 19
Xilinx ICAP (with DMA) 443 296 0 67
ZyCAP 806 620 0 382

C. Run-time PR management

Along with high reconfiguration throughput, lean run-time
reconfiguration management is also required for better system
performance. The ZyCAP software driver implements manage-
ment functions such as transfer of bitstreams from non-volatile
memory to the DRAM, memory management for partial bit-
streams, bitstream caching, ZyCAP hardware management and
interrupt synchronisation. The driver provides an API through
which high-level software applications can manage PR.

The driver is initialised with the Init_Zycap() call,
which allocates buffers in DRAM for storing bitstreams,
configures the DevC interface, and configures the interrupt
controller. The number of bitstreams buffered in DRAM
is configurable and defaults to five. A reconfiguration is
initialised using the Config_PR_Bitstream() call, by
specifying only the bitstream name. Unlike existing vendor
APIs, the software designer does not need to know where the
bitstream is stored or what the bitstream size is.

The driver internally manages partial bitstream information
such as the bitstream name, size and DRAM location. When
a configuration command is received, it first checks if the
bitstream is cached in DRAM, and if so configures the ZyCAP
soft DMA controller with the bitstream location and size to
trigger reconfiguration. If it is not cached, it is transferred
from non-volatile memory (SD card) to a buffer in the DRAM
and the corresponding data structure is created. If all DRAM
bitstream slots are full, the least recently used (LRU) bitstream
is replaced. The driver also enables pre-caching of bitstreams
in the DRAM using the Prefetch PR Bitstream() API.

The driver supports deferred interrupt synchronisation,
which enables non-blocking processor operation during re-
configuration. By setting the intr_sync argument in
Config_PR_Bitstream(), the function returns immedi-
ately after configuring the DMA controller. The interrupt
corresponding to the reconfiguration can be synchronised later
using the Sync_Zycap() call before accessing the reconfig-
ured peripheral. In this way the processor is free to execute
other software tasks while reconfiguration is in progress. If
intr_sync is set to zero, the driver operates in blocking
mode and returns only after reconfiguration.

IV. CASE STUDY

To analyse the effect of different PR schemes on overall
system performance, we consider a case study from [4]. The
experiment involves image edge detection after a low-pass
filter is applied. Each image is processed twice. First, through
a median filter followed by Sobel edge detection, then a
smoothing filter followed by Sobel. The modules used for the



IEEE EMBEDDED SYSTEMS LETTERS, VOL. X, NO. X, JAN XXXX 4

TABLE II
TIMING PARAMETERS

Parameter Desig. Value (Seconds)

Decision time Tsetup 0
Reconfiguration time Tconfig 0.970/T
Transfer of control time Tcontrol 1.12× 10−6

Data send time Tdatain (B/400.5)× 10−6

Compute time Tcompute 0
Data receive time Tdataout (B/134.2)× 10−6

experiments are reconfigured sequentially in a single PRR. An
image is first transferred from external memory to a processing
core and the processed image is streamed back to the memory
via DMA. After each algorithm, the output is analysed by the
processor for quality checks.

For our experiments, we use the ZedBoard [7].The PRR size
is 2300 CLBs, 60 DSP blocks and 50 BRAMs, large enough to
accommodate the largest module (smoothing filter). The partial
bitstream size is 1,018,080 Bytes while a full Zynq bitstream
would be 4,045,564 Bytes. A soft DMA controller is used to
transfer data between the external memory and the processing
core through an HP port and a hardware timer is interfaced
for accurate performance measurement. All PL components
run at 100MHz. The hardware and software for this evaluation
are developed using Xilinx’s EDK 14.6 and PlanAhead 14.6
software versions.

DMA transfers between the external memory and the PRR
are measured at 382MB/s. Throughput between the processor
and the external memory is 128MB/s. The latency for access-
ing a peripheral from the processor is 140ns. To configure the
DMA controller and manage data movement, 8 registers are
configured by the processor, consuming 1.12us. These map to
the execution time parameters described in Section II as shown
in Table II for processing B Bytes of data at a reconfiguration
speed of T MB/s.

Since this application uses a single PRR and follows a
predefined reconfiguration sequence, no decision time is re-
quired (Tsetup = 0). Reconfiguration time depends upon the
reconfiguration scheme used, while Tcontrol corresponds to
DMA controller configuration. Tcompute = 0 since the cores
operate in streaming mode. Each iteration requires two con-
figurations and two sets of DMA operations.For schemes that
do not support overlapped reconfiguration, the processor can
only execute its quality checks after configuring the hardware
for next iteration. For overlapped schemes, the processor can
do this while the hardware is being reconfigured.

Fig. 5 shows the effect of the different reconfiguration
schemes on system throughput for different image sizes. As
frame size increases, parallel hardware and software execution
(solid lines) has a clear benefit. In these cases, when the
software execution time is smaller than the reconfiguration
time, the PCAP based method has a significant advantage over
the DMA based AXI HWICAP due to its higher throughput.
However, as the data size increases (above 512×512 pixels),
overlapped reconfiguration becomes more important, and the
DMA based AXI HWICAP outperforms the PCAP method
since software execution time is now comparable to recon-
figuration time. For large frame sizes, the performance of

32 64 128 256 512 1024 2048 4096

104

105

106

107

108

Frame Size (pixels)

T
h
ro
u
g
h
p
u
t
(p

ix
el
s/
se
c)

AXI HWICAP(non-DMA)

AXI HWICAP(DMA)

PCAP

ZyCAP

Fig. 5. Comparison of total number of pixels processed for different PR
schemes. Solid lines represent hardware-software co-execution and dotted
lines represent sequential hardware and software execution.

the DMA based methods converges since the reconfiguration
time begins to diminish with regard to software execution
time. The same is true for blocking non-DMA based methods,
but they saturate at a lower overall throughput. At an image
size of 512×512, ZyCAP increases application throughput by
11.35×, 3.28×, and 2.96×, over AXI HW ICAP, DMA based
AXI HW ICAP, and PCAP, respectively.

V. CONCLUSION AND FUTURE WORK

We have discussed the role of partial reconfiguration in
hybrid FPGA platforms such as the Xilinx Zynq. We presented
ZyCAP, a controller that significantly improves reconfiguration
throughput in Zynq system over standard methods, while
allowing overlapped execution, resulting in improved overall
system performance. ZyCap also plays a significant role in
automating PR development on hybrid FPGAs [8].

ZyCAP is has been implemented for the Standalone operat-
ing system, and we aim to add support for Linux. ZyCAP
hardware can be similarly used with soft processors like
MicroBlaze, but driver software modifications are required
for interrupt management. This would make ZyCAP portable
across all Xilinx PR capable FPGAs. We are releasing this
design in the public domain to help encourage adoption of PR
on hybrid FPGA platforms [9].

REFERENCES

[1] UG585: Zynq-7000 All Programmable SoC Technical Reference Manual,
Xilinx Inc., Mar. 2013.

[2] K. Vipin and S. Fahmy, “A high speed open source controller for FPGA
partial reconfiguration,” in Proceedings of the International Conference
on Field Programmable Technology (FPT), 2012, pp. 61–66.

[3] UG702: Partial Reconfiguration User Guide, Xilinx Inc., Oct. 2010.
[4] E. El-Araby, I. Gonzalez, and T. El-Ghazawi, “Exploiting partial run-time

reconfiguration for high-performancee reconfigurable computing,” ACM
Transactions on Reconfigurable Technology and Systems (TRETS), vol. 1,
no. 4, pp. 21:1–21:23, Jan. 2009.

[5] M. Gokhale, P. Graham, E. Johnson, N. Rollins, and M. Wirthlin,
“Dynamic reconfiguration for management of radiation-induced faults
in FPGAs,” in Proceedings of International Parallel and Distributed
Processing Symposium, 2004, p. 145.

[6] S. Liu, R. N. Pittman, A. Forin, and J. Gaudiot, “On energy efficiency
of reconfigurable systems with run-time partial reconfiguration,” in IEEE
International Conference on Application-specific Systems Architectures
and Processors (ASAP), 2010, pp. 265–272.

[7] ZedBoard : Hardware User’s Guide, Jan. 2013.
[8] K. Vipin and S. A. Fahmy, “Automated high level design framework

for adaptive systems using partial reconfiguration on hybrid FPGAs,” in
Proceedings of International Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2014.

[9] Zycap. [Online]. Available: https://github.com/archntu/zycap


