
Architecture-Aware Reconfiguration-Centric
Floorplanning for Partial Reconfiguration

Kizheppatt Vipin and Suhaib A. Fahmy

School of Computer Engineering, Nanyang Technological University,
Nanyang Avenue, Singapore

{vipin2, sfahmy}@ntu.edu.sg

Abstract. Partial reconfiguration (PR) has enabled the adoption of FP-
GAs in state of the art adaptive applications. Current PR tools require
the designer to perform manual floorplanning, which requires knowledge
of the physical architecture of FPGAs and an understanding of how to
floorplan for optimal performance and area. This has lead to PR re-
maining a specialist skill and made it less attractive to high level system
designers. In this paper we introduce a technique which can be incor-
porated into the existing tool flow that overcomes the need for manual
floorplanning for PR designs. It takes into account overheads generated
due to PR as well as the architecture of the latest FPGAs. This results
in a floorplan that is efficient for PR systems, where reconfiguration time
and area should be minimised.

1 Introduction

Partial reconfiguration (PR) makes use of the fact that the functionality im-
plemented in an FPGA can be altered by selectively modifying the contents of
part of the configuration memory, while the remaining portions continue to op-
erate. Although PR has several advantages, it also entails a number of design
challenges. One of these is the floorplanning of reconfigurable regions.

For standard static FPGA design, floorplanning is generally only of interest to
expert designers trying to highly optimise a design. The tools available from ven-
dors are sufficiently versatile to perform area-constrained placement and routing,
while achieving timing closure. Current PR tools do not perform floorplanning
automatically, and require considerable input from the designer. The designer is
expected to have knowledge about the physical architecture of the target FPGA,
as well as the details of the PR process and the run-time costs associated with
it, if they are to come up with an efficient floorplan. Manual floorplanning based
on these factors is cumbersome and often leads to sub-optimal results and con-
sumes a large amount of design time. This floorplanning requirement has made
PR less attractive to adaptive system designers.

In this paper we propose methods, which can help system engineers adopt
PR without the need for manual floorplanning. The tool we propose can be
integrated into the existing FPGA tool chain. We are interested primarily in
adaptive applications where reconfiguration occurs at the module level, and the

sequence of configurations is unknown up front. We consider the overheads asso-
ciated with PR as well as the characteristics of target devices. We are interested
in recent families of FPGAs such as the Xilinx Virtex-5 and Virtex-6, which are
highly heterogeneous in nature, include embedded processors and transceivers,
and comprise an irregular arrangement of DSP and Block RAM columns. For
PR applications, we are typically concerned with reducing reconfiguration time
and area. An intelligent arrangement and allocation of PR regions can result in
reduced area and hence allow designs to fit on smaller devices. Cost functions
are used that take into account several factors such as resource wastage and
reconfiguration time, rather than ASIC floorplanning metrics.

The remainder of the paper is organised as follows: Section 2 discusses related
work, Section 3 presents background on the PR process, Section 4 introduces the
proposed floorplanning approach, Section 5 presents experimental results and
Section 6 concludes the paper.

2 Related Work

Several approaches to FPGA floorplanning have been published, although work
related to floorplanning for PR is less abundant. Traditionally, FPGA floorplan-
ning is considered as a fixed-outline floorplanning problem, as introduced in [1]
and further extended in [3]. The authors present a resource-aware fixed-outline
simulated-annealing and constrained floorplanning technique. Their formulation
can be applied to heterogeneous FPGAs but the resulting floorplan may contain
irregular shapes, which are not allowed in current PR designs. Another interest-
ing study is presented in [9], which presents an algorithm called “Less Flexible
First (LFF)”. In order to perform placement, the authors define the flexibility
of the placement space as well as the modules to be placed. A cost function is
derived in terms of flexibility and a greedy algorithm is used to place modules.
The generated floorplan will have only rectangular shapes, but the approach
only addresses older-generation FPGAs and is unsuitable for recent families due
to their heterogeneous resources.

Findings in [2] are based on slicing trees. Using this method it can be ensured
that the floorplan contains only rectangular shapes. Here, the authors assume
that the entire FPGA fabric is composed of a repeating basic tile, which contains
all types of FPGA resources including Configurable Logic Blocks (CLBs), Block
RAMs and DSP slices. Although this assumption is valid for older-generation
FPGAs, such as the Xilinx Spartan-3, more recent FPGAs such as the Xilinx
Virtex-5 family, do not have such a repeated tile architecture.

Yuh et al. have published two methods for performing floorplanning for PR.
One method is based on using a T-tree formulation [10] and the other is based
on a 3D-sub-Transitive Closure Graph (3D-subTCG) [11]. Using T-trees, each
reconfigurable operation is represented as a 3D-box, with its width and depth
representing the physical dimensions and its height being the execution time
required for the operation. Here the reconfiguration operations are at task level

rather than functional level and the authors consider older-generation Virtex
FPGAs, which require columnar reconfiguration.

Montone et al. present a reconfiguration-aware “floorplacer” in [4]. They
consider the latest architecture of Virtex-5 FPGAs. Initially the design is divided
into reconfiguration areas based on the minimisation of temporal variance of the
resource requirement. Then a floorplacer tries to minimise the area slack using
simulated-annealing. In [5] a floorplanning method based on sequence pairs is
presented. In this work, authors have shown how sequence pairs can be used
to represent multiple designs together. Here, designs are the circuitry present
in the FPGA at different instances. An objective function tries to maximise the
common areas between designs and simulated-annealing is used for optimisation.
Although simulated-annealing-based floorplanners have been developed, for soft
modules, which are common in PR designs, the results are not satisfactory [12].

All existing work we have found focuses on the static properties of a particular
placement. Hence, the placement is not optimised for the dynamic behaviour of
a partially reconfigurable system. Other work relies on fixed task-graphs and
hence only optimises for a fixed sequence of configurations. This paper presents
an approach that optimises the runtime properties by finding a placement that
results in the lowest possible reconfiguration time, considering the lowest level
granularity of heterogeneous resources on modern FPGAs, for designs where the
adaptation is at a functional level and hence unpredictable.

3 PR Floorplanning Considerations

In this section we develop a device model and explore the factors to be consid-
ered while designing an efficient floorplanner for PR. The limitations of several
existing methods will be also explained.

3.1 Architecture Considerations

For efficient floorplanning, the tool should be aware of the FPGA architecture
and special requirements arising due to PR. Xilinx Virtex-5 FPGAs are divided
into rows and columns. The number of rows in a device depends upon the size
of the device. The smallest configurable unit is a frame. A frame is one bit
wide and spans an entire device row [8]. Resources such as CLBs, Block RAMs
etc. are arranged in a columnar fashion extending the full height of the device
and are referred to as blocks. A tile is one row high and one block wide, and
contains a single type of resource, as shown in Fig. 1. One CLB tile contains 20
CLBs, one DSP tile contains 8 DSP Slices, and one BRAM tile contains 4 Block
RAMs arranged vertically. A CLB tile contains 36 frames, a DSP tile 28 and
a Block RAM tile 30 frames arranged side by side. The data size of a frame
is 164 bytes. Embedded processors and transceivers are arranged along device
row boundaries, but they obstruct the continuity of DSP and BRAM columns.
Most existing floorplanners have not taken this device architecture into account,
claiming only to use regular grid structures.

CLB Tile

DSP Tile

BR Tile

One Frame

C
L
B
B
lo
ck

D
S
P
B
lo
ck

B
R
B
lo
ck

ROW1 TOP

ROW0 TOP

ROW0 BOTTOM

ROW1 BOTTOM

Fig. 1. Virtex 5 FPGA architecture.

3.2 PR Operation

Partial reconfiguration is performed by modifying the circuitry implemented in
the PR regions. Any modification in a region requires the full reconfiguration of
the corresponding region. For accurate calculation of efficient PR schemes, the
reconfigurable regions should be considered in terms of tiles since configuration
must occur on a per tile basis. To use regions with incomplete tile boundaries,
extra circuitry is required to read, modify, and write configuration information,
resulting in increased area and latency. Reconfigurable regions must always be
rectangular in shape. Since each tile is one device row high, the height of re-
configurable regions is an integer multiple of device rows. Partial bitstreams are
loaded into the FPGA with the help of an Internal Configuration Access Port
(ICAP), which is usually controlled by an embedded processor. The size of the
bitstream, and hence the reconfiguration time of a region, is directly propor-
tional to the total area of the region, irrespective of how many resources present
in the region are actually utilised.

3.3 Required Reconfigurable Area

An important factor in floorplanning a reconfigurable region is its area. At run-
time, reconfigurable regions implement different functional instances at various
points in time. These functional instances are called modes. The required area
(Ara), in frames, for a PR region is the net area required for implementing all
the modes assigned to it. This area is calculated by taking the maximal resource
requirement for each resource type, in tiles, and multiplying by the number of
frames needed for each tile of that type: Note that there is some overhead in this
resource requirement due to it being based on whole tiles.

Ara =
∑
j

Wj ∗Nj , j ε CLB,DSP,BlockRAM. (1)

where Wj is the number of frames per type of tile j and Nj is the number of
tiles of type j needed.

3.4 Actual Reconfigurable Area

When a design is placed, the actual area may differ from the initial requirement
due to the rectangular shape requirement for PR regions or the disparate ar-
rangement of resources on the FPGA fabric. Mathematically, the actual area
(Aaa) of a region is calculated as

Aaa =
∑
i

Wi ∗Ni, i ε CLB,DSP,BlockRAM. (2)

where Wi is the number of frames per tile of type i and Ni is the number of tiles
of type i allocated in the region. The result is the number of frames to configure
the placed region.

3.5 Resource Wastage

The resource wastage for a particular placement of a reconfigurable region (Arw)
is the difference between the actual area and the required area of that region,
in frames. The total resource wastage of a full floorplan (Atw) is the sum of
resource wastage among all the regions.

Arw = Aaa −Ara. (3)

Atw =
∑
r

Arw. (4)

While floorplanning partial regions, the floorplanner should try to minimise the
total resource wastage in order to minimise reconfiguration time and maximise
the resources available for implementing static logic.

3.6 Wirelength

Total wirelength is an important parameter in determining the effectiveness of
floorplanning. Here we consider the Manhattan distance between regions and
the total wirelength between two regions is calculated as the product of the
Manhattan distance between them and the number of wires connecting them.
Several previous researches consider total Half Perimeter Wire Length (HPWL)
as the minimisation objective function for their floorplanner. Practically, HPWL
has very little impact in FPGA floorplanning. In ASIC floorplanning, HPWL
gives a figure of compactness of cells and hence the best timing achievable, but
in FPGAs, where all resources as well as routing between them are fixed, HPWL
does not give an accurate measure of timing performance.

3.7 Static Logic

Static logic is the area of the FPGA with fixed functionality. I/O pins are always
assigned to the static region, since assigning I/O pins to reconfigurable regions
may cause undesirable switching during reconfiguration. There is no restriction

on the shape of static logic. To make optimal use of FPGA resources, and achieve
timing closure, it is better not to restrict the shape of static logic or allocate a
special location for it. The reconfigurable regions should be floorplanned in such
a way that, the area available for the implementation of static logic is maximised,
and it should be floorplanned after the PR regions.

4 Proposed Floorplanner

The input to our proposed floorplanner is the partition information of reconfig-
urable regions and their connectivity information. A connectivity matrix is used,
whose element (i, j) represents the number of nets between region i and region
j. The output of the floorplanner is a set of area constraints, which specify the
coordinates of the bottom left and top right corners of each region. These con-
straints can be used for generating the user constraints file, which will be used
by the vendor specific place and route tool for generating the final configuration
bitstreams. The floorplanning problem can be formulated as follows:

Given:

– M regions with resource requirement 3-tuple, (nCLB , nBR and nDSP) for
each region,

– an FPGA of width W and height H,
– with NCLB , NBR and NDSP resources available,
– and R device rows,

partition the FPGA into M rectangles, so that:

– each region can be mapped into a rectangle, which contains sufficient re-
sources,

– rectangle height being an integer multiple of device row,
– no rectangles overlapping,
– minimising the cost function.

The outputs are the (xmin,ymin) and (xmax,ymax) coordinates of each rectangle
so that 0 ≤ xmin ≤ xmax ≤W and 0 ≤ ymin ≤ ymax ≤ H.

4.1 Columnar Kernel Tessellation

Mapping an area directly using FPGA primitives is not practical, due to number
of factors such as the large search space, limited number of available primitives
in the FPGA, fixed primitive locations, rectangular shape region constraint, etc.
Hence we adopt a new method called Columnar Kernel Tessellation. A kernel
is a structure one device row high, containing FPGA primitives, which can be
repeated in the vertical direction to satisfy a region’s resource requirements. The
availability of kernels for floorplanning a region changes based on the floorplan-
ning of previous regions. The smallest kernel is a single tile. Each tile can be
clustered with nearby tiles and can form new kernels.

The first step of floorplanning is to calculate the resource usage of each region
in terms of reconfigurable tiles. For this purpose, the input resource utilisation

B
lo

ck
 R

A
M

C
LB

C
LB

D
S

P

D
S

P

C
LB

C
LB

B
lo

ck
 R

A
M

B
lo

ck
 R

A
M

C
LB

C
LB

D
S

P

D
S

P

C
LB

C
LB

B
lo

ck
 R

A
M

C
LB

C
LB

Fig. 2. Two Block RAM-DSP kernels and a merged kernel.

values are divided by the corresponding number of resources available in a tile.
This may result in some overhead if the resources needed do not use a whole tile.
For example in Virtex-5 FPGAs, the required number of CLBs will be divided by
20, DSPs by 8, and Block RAMs by 4. The floorplanner maintains a database of
FPGA architectures that contains information about the resource type of each
device column. The different types of columns are mapped to a single co-ordinate
system for better management. Each tile in the FPGA is encoded using a data-
structure with information including location, resource type, used or not, and
availability. Once a tile is used to floorplan a region, its use field is set to true.
The tiles belonging to the locations of hard processors and transceivers are set
to be unavailable.

In order to perform floorplanning, the regions are initially sorted according
to descending resource requirements, into a floorplanning schedule. Regions are
selected based on the following ordered criteria.

1. Require both DSP as well as Block RAM tiles,
2. Require DSP and CLB tiles,
3. Require Block RAM and CLB tiles,
4. Require CLBs tiles alone.

This classification is based on the fact that DSP tiles are the least available
and hence the most precious FPGA resource. Block RAM tiles are weighted
next and CLB tiles are the most abundant resource available, and so given
the least weighting. Regions belonging to each group are sorted in descending
order of DSP, Block RAM and CLB tiles required. Regions are selected from the
scheduling list in sequential order and packed.

The floorplanner starts with regions which use both DSP tiles and Block
RAM tiles. The floorplanner selects a kernel, which contains both DSP and
Block RAM tiles. To generate kernels, the resource column information from
the database is utilised. For each DSP column, the nearest Block RAM column
location is calculated. The nearest tiles of DSP and Block RAM along with the
tiles between them are merged to create kernels. These kernels are merged again
and larger kernels are created. This operation is illustrated in Fig. 2 in the case
of a Virtex-5 FX70T FPGA. It is to note that when kernels are merged, the CLB
tiles in between them are also included in the resulting kernel. All kernels are one
device row high. From the set of available kernels, the kernel with smallest size is
chosen and used for packing. Example calculation of kernel size is shown in Fig.
3. Kernels are repeated in a columnar direction to meet the region’s resource
requirements. The minimum number of kernels required for packing is equal to
the number of DSP tiles required divided by the number of DSP tiles in the
kernel. The maximum number of kernels that can be used to satisfy the DSP
resource requirement is equal to the number of device rows, i.e. the full device
height, since the height of a kernel is one device row. If the arrangement of a

Kernel #DSP tiles #BR tiles #CLB tiles #Frames #Bytes

1 1 2

2 2 6

28 +
30 +

 36 = 94

2*28 +
2*30 +

 6*36 = 332

94 * 164
= 15416

332 * 164
= 54448

B
lo

ck
 R

A
M

C
LB

C
LB

D
S

P

B
lo

ck
 R

A
M

C
LB

C
LB

D
S

P

D
S

P

C
LB

C
LB

B
lo

ck
 R

A
M

C
LB

C
LB

Fig. 3. Example calculation of the size of kernel.

kernel cannot meet the required number of DSP tiles, that kernel is discarded
and the kernel with next lowest resource requirement is selected and used for
packing.

Once the DSP-BR kernels are packed, the remaining BR and CLB resources
required for that region are calculated. If more Block RAMs are needed, the
nearest Block RAM column is selected from the database and used. Preference
is given to columns towards the right and left edges of the FPGA in order to
maximise free space available towards the centre of the FPGA. If more CLB
tiles need to be allocated, CLB columns towards the device edge are selected
and allocated. Once the allocation is performed, the tiles which are used are
marked in the database as used.

Now the regions which use only DSP and CLB tiles are packed. For this pur-
pose, the kernels considered contain only DSP tiles and CLB tiles. The minimum
number of kernels required for packing will be equal to the number of DSP tiles
required divided by the number of DSP tiles in the kernel. Tiles which are not
marked as used or not available are used to generate the new set of kernels. This
same process is followed once more for regions containing Block RAMs. Finally,
regions containing only CLB tiles are packed.

The inherent rectangular shape of kernels and the columnar repetition guar-
antees that the allocated area for each region will be of rectangular shape and
region height will be an integer multiple of device rows. The floorplanner fol-
lows a divide and conquer method. The packing of each region reduces the search
space for implementing subsequent regions as well as the number of kernels avail-
able. The algorithm runs a number of times, each time starting with a different
kernel for packing. The number of iterations can be specified or can be stopped
when a required cost objective is met. At the end of each complete packing, a
cost function is evaluated for the floorplan . The cost function is defined as

CF = α ∗Atw + β ∗WL. (5)

where Atw is the total resource wastage and WL is the total wirelength between
regions. α and β are weight factors with α > β. For designs where reconfigura-
tion time is highly critical compared to speed of operation, the value of β can
be set to zero and for applications where timing is highly critical rather than
reconfiguration time α can be set to zero. For other applications, the value of α
and β are weighted accordingly.

At the end of each complete floorplan generation, a post processing step is
performed, in which the regions are moved along the columnar direction towards

RR 1 RR 1

RR 2

RR 2

(a) (b)

Fig. 4. (a) Resulting floorplan from [4], (b) Resulting floorplan from our method.

the middle of the columns. If this movement improves wirelength, the movement
is accepted otherwise it is rejected. Also, regions that occupy the same columns
are swapped and wirelength is recalculated. This move is also accepted only if
it improves wirelength. These moves are a type of pseudo-simulated-annealing.
This is possible due to the fact that the resources are arranged in columnar
fashion in the FPGA, and moving a region along its columns does not affect
resource availability, provided there are no unavailable tiles in the direction of
movement.

5 Case Study

A direct comparison of our method with existing methods is not possible due to
the unavailability of other floorplanning tools and uniform benchmark circuits.
Hence, we use a reported case study, taken from [4], and compared the results us-
ing our method. The system implemented consists of a CAN controller, Floating
Point Unit (FPU), FIR filter, CRC controller and an Ethernet controller. Based
on the partitioning algorithm, modules are partitioned into two reconfigurable
regions. The CAN controller, FPU and CRC are implemented in reconfigurable
region 1 (RR 1) and FIR filter and Ethernet controller are implemented in re-
gion 2 (RR2), as per [4]. The design is implemented in a Virtex-5 LX30T device.
Region 1 requires 24% of the available CLB and 5 Block RAMs and region 2
requires 13% of CLBs. The static region requires 61% of CLBs and 40 Block
RAMs. The resulting floorplan reported in the paper is given in Fig. 4.a. It
is clear that although region 2 does not require Block RAMs or DSP slices,
the resulting floorplan includes these resources. This leads to increased region
size, higher configuration time and additional storage requirement. Furthermore,
these resources cannot be used elsewhere in the design. This floorplan uses a total
of 1766 frames.

A floorplan determined by our method is shown in Fig. 4.b. Region 2 is
floorplanned in such a way that no DSP slices and Block RAMs are used. Hence
our method uses 58 fewer frames and reserves more resources for static logic
implementation. The smaller size of the region also contributes to 18.4 KB (9.2×2
since there are two partial bitstreams for that region) less storage requirement
and a corresponding improvement in reconfiguration time.

For a more complex investigation, we could find no existing work to com-
pare to, nor standard tools to use, so we floorplanned an in-house design using

our proposed method and compared it to an ad-hoc floorplan based on previous
experience with some optimisation effort. The ad-hoc floorplanning is done as
per Xilinx PR floorplanning guidelines, with the help of the PlanAhead soft-
ware. The selected design is a software defined radio (SDR) targeted for Xilinx
Virtex-5 FX70T FPGA. The SDR chain consists of a matched filter, carrier re-
covery circuit, demodulator, signal decoder and video decoder. Each module has
a number of modes with different resource requirements. Modes are mutually
exclusive implementations of the module with the same set of inputs and out-
puts. Partitioning of modes into regions is beyond the scope of this paper, but
is explained in our previous work [6]. Here we assume each module is assigned
to a single region, and hence the resource requirement of each region is the re-
quirement of the largest mode of the module assigned to it. Here, all modules are
connected in sequential order with a 64 bit wide bus. The static logic contains
a PowerPC-440 embedded processor, external memory interface and an ICAP
controller. The different regions and associated resource requirements are given
in Table 1. The rq′d field indicates the exact number of resources required, the
tiles field indicates the required number of tiles needed to satisfy the resource
requirement and the waste field indicates the resources wasted due to round-
ing the resources to tiles. The total number of frames wasted due to the tiling
operation is roughly 115 frames.

Table 1. Resource utilisation for reconfigurable regions.

Region
CLBs BRs DSPs

No. of Frames
Rq’d Tiles Waste Rq’d Tiles Waste Rq’d Tiles Waste

Matched Filter 500 25 0 0 0 0 34 5 6 1040

Carrier Recovery 123 7 17 0 0 0 8 1 0 280

Demodulator 97 5 3 8 2 0 0 0 0 240

Decoder 234 12 6 2 1 2 0 0 0 462

Video Decoder 1100 55 0 6 2 2 34 5 6 2180

Total 2054 104 26 16 5 4 76 11 12 4202

As per the description in Section 4.1, the order for floorplanning regions is the
video decoder first, followed by the matched filter, carrier recovery, demodulator
and finally the decoder. The result of the ad-hoc floorplanning and 5 of the best
floorplans using our method are given in Table 2.

There is no fixed relationship between the resource wastage and wirelength,
owing to the rectangular shape requirement of the reconfigurable regions as well
as the disparate arrangement of resources. The ad-hoc plan, the plan which pro-
duces minimum resource wastage (Plan1) and the plan which gives minimum
wirelength (Plan4) are shown in Fig. 5. When the value of α is set to zero in the
cost function, Plan 4 is the preferred floorplan, and when β is set to zero, Plan
1 gives the best results. We can see that the proposed floorplanner performs
well on area: all the floorplans have lower resource wastage from 38% to 51%,

Table 2. Resource wastage and total wirelength for different floorplans.

Plan No.
Wastage, Atw

(frames)
Wirelength, WL
(Normalised)

Adhoc 956 7420

Plan1 466 8640

Plan2 486 9056

Plan3 592 11776

Plan4 516 7392

Plan5 556 9120

(a) (b) (c)

Fig. 5. Floorplans using (a) An ad-hoc approach, (b) proposed method with minimum
resource wastage, (c) with minimum wirelength.

which corresponds to a decrease in reconfiguration from 7% to 9.5% compared
to the ad-hoc plan. Since the modules of the regions are in a continuous chain,
the ad-hoc method is able to achieve good total wirelength. In usual FPGA
floorplanning without PR, the ad-hoc floorplan is fairly acceptable, since all
the resource requirements are satisfied and wirelength is minimised. But for PR
designs, the resource wastage creates a considerable overhead in terms of recon-
figuration time. Moreover, storing 956 frames of configuration frames requires
153 KB extra storage memory for each system configuration.

These results demonstrate the advantage of considering the required imple-
mentation metrics in floorplanning. While static designs only require the floor-
plan to fit and achieve timing, a PR design’s reconfiguration time is also affected
by the floorplan. Our approach ensures this is factored into the floorplanning
process, and results in savings as shown.

6 Conclusion

In this paper we introduced a novel method for PR design floorplaning. The
method described is fully compatible with the latest vendor-supported PR tool-

flows. The heterogeneous and irregular architecture of modern FPGA families
are considered and floorplanning cost functions tailored for PR are introduced.
Our floorplanning method is portable to older FPGAs by considering them as
having a single device row. Our study proves that it is possible to optimise the
area requirement considering the tile constraint. We have also found that a signif-
icant area overhead is generated due to the tiling requirement of reconfigurable
regions. Hence, considering tiling at the partitioning stage, prior to floorplan-
ning may yield more efficient designs. We intend to integrate this floorplanner
with our previous work on efficiently partitioning modules into reconfigurable
regions. The partitioning tool and floorplanner along with the vendor supplied
synthesis and place and route tools can essentially automate most of the PR
design flow, which is our long term goal. [7] This will lead to wider adoption of
partial reconfiguration and development of more efficient and effective adaptive
systems.

References

1. Adya, S., Markov, I.: Fixed-outline floorplanning through better local search. In:
Proceedings of ACM/IEEE International Conference on Computer Design (2001)

2. Banerjee, P., Sangtani, M., Sur-Kolay, S.: Floorplanning for partially reconfigurable
FPGAs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 30(1), 8–17 (Jan 2011)

3. Feng, Y., Mehta, D.: Heterogeneous floorplanning for FPGAs. In: Proceedings of
International Conference on VLSI Design (2006)

4. Montone, A., Santambrogio, M., Sciuto, D., Memik, S.: Placement and floorplan-
ning in dynamically reconfigurable FPGAs. ACM Transactions on Reconfigurable
Technology and Systems 3(4), 24:11–24:34 (Nov 2010)

5. Singhal, L., Bozorgzadeh, E.: Multi-layer floorplanning for reconfigurable designs.
IET Computers & Digital Techniques 1(4), 276–294 (July 2007)

6. Vipin, K., Fahmy, S.: Efficient region allocation for adaptive partial reconfiguration.
In: Proceedings of the International Conference on Field Programmable Technology
(FPT) (2011)

7. Vipin, K., Fahmy, S.: Enabling high level design of adaptive systems with par-
tial reconfiguration. In: Proceedings of the International Conference on Field Pro-
grammable Technology (FPT) (2011)

8. Xilinx Inc.: UG191: Virtex-5 FPGA Configuration User Guide (2010)
9. Yuan, J., Dong, S., Hong, X., Wu, Y.: LFF algorithm for heterogeneous FPGA

floorplanning. In: Proceedings of Asia and South Pacific Design Automation Con-
ference (ASP-DAC) (2005)

10. Yuh, P., Yang, C., Chang, Y.: Temporal floorplanning using the T-tree formula-
tion. In: Proceedings of IEEE/ACM International Conference on Computer Aided
Design (ICCAD) (2004)

11. Yuh, P., Yang, C., Chang, Y., Chen, H.: Temporal floorplanning using 3D-subTCG.
In: Proceedings of Asia and South Pacific Design Automation Conference (ASP-
DAC) (2004)

12. Zhan, Y., Feng, Y., Sapatnekar, S.: A fixed-die floorplanning algorithm using an
analytical approach. In: Proceedings of Asia and South Pacific Design Automation
Conference (ASP-DAC) (2006)

