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Adaptive systems have the ability to respond to environmental conditions, by mod-

ifying their processing at runtime. While this is easy to do in software systems,

modern algorithms can be computationally expensive, requiring powerful proces-

sors. At the same time hardware is not as flexible. Field programmable gate

arrays (FPGAs) are recognised as being suitable for adaptive systems implemen-

tation, due to their flexibility and high performance. New hybrid FPGA platforms

which integrate able processors with reconfigurable fabric provide a new platform

to further explore hardware reconfigurability. The use of partial reconfiguration

(PR) on FPGAs to implement adaptive systems has been proposed many times in

the literature. However the design process for partially reconfigurable systems is

complex and requires specialist knowledge on behalf of the application designer.

Hence, it has remained a rarely used capability outside of academic circles. We

propose a new approach to leverage PR within adaptive systems, by integrating

with, rather than circumventing, supported vendor tool flows, while automating

many of the steps that have made such designs more difficult in the past. This

makes it possible for system designers with less FPGA expertise to use PR when

designing adaptive systems.
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Chapter 1

Introduction

Adaptive System: A system that can change itself in response

to changes in its environment in such a way that its performance

improves through a continuing interaction with its surroundings.

McGraw-Hill Dictionary of Scientific & Technical Terms, 6E, 2003 The McGraw-Hill Companies, Inc.

As a multidisciplinary term, an adaptive system may represent a biological system

evolving based on its environmental conditions, a business model changing accord-

ing to market situations, or a software engineering cycle designed to accommodate

different user requirements. In our research, adaptive systems represent adaptive

computing systems whose computing behaviour changes based on their operating

surroundings. Computation involves data processing based on a predefined set

of algorithms, such as signal processing techniques involved in a communication

system, and adaptation involves selecting a specific processing algorithm based on

current operating conditions, such as selecting a specific modulation scheme based

on channel noise levels. The two contradicting factors affecting adaptive system

implementation are flexibility and performance. Although implementing flexibil-

ity in software is easy with programming frameworks that support polymorphism

and similar properties, the performance of such systems is not always adequate,

especially in cyber-physical systems that must process complex sensor data and

meet real-time deadlines, often within power and size restrictions. Achieving both

1
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flexibility and performance requires flexible hardware architectures. While imple-

menting adaptive systems on programmable logic devices has been explored in the

past, the design methods are typically ad-hoc and require significant architecture

expertise. This research is an effort to develop a framework, which enables sys-

tematic implementation of high performance adaptive systems without burdening

the designer with low-level implementation details.

Rapid advancements in technology and constantly evolving standards are major

motivations for adaptive system development as the development time for newer

standard specifications is continuously reducing, demanding frequent system up-

grades. More recent standards also typically require complex data processing ca-

pabilities as well as high data rates. Software-only implementations, while allowing

for flexibility, cannot support these processing requirements, especially in embed-

ded deployments. Developing specialised chips (ASICs) for these evolving stan-

dards is becoming less and less practical due to the long turnaround time required

for ASIC development and the very high cost associated with integrated circuit

development. Reconfigurable computing is a promising solution for this challenge.

Reconfigurable computing makes it possible to bring flexibility to hardware im-

plementations. Field programmable gate arrays (FPGAs) offer the benefits of a

custom designed datapath, with the possibility of modifying the implementation

post-deployment. What interests us here, is the opportunity to modify behaviour

at runtime. Reconfigurable computing tries to combine the high performance of

hardware with some of the flexibility of software.

Practically, a single chip can be used to implement multiple circuits through recon-

figuration. For example, a chip used for implementing audio filters during music

playback, can be used for implementing video decoders when the system plays a

movie. These hardware modifications are transparent to the end user and the nec-

essary circuitry is automatically loaded. The advantages of using such a platform

are multifaceted. The cost can be considerably reduced along with the size and

weight of the system, as well as the power consumption. Another advantage is

upgradability: when a better user application is available, the system can be up-

graded at minimal cost and without any component level hardware modifications.
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Despite the advantages of hardware reconfiguration, it is not widely adopted

mainly due to the difficulty associated with designing such systems. Instead, in

most cases, in-field upgradability is the only feature that is used in production sys-

tems, while the runtime reconfiguration capability is restricted to research work.

In the subsequent sections we discuss the challenges associated with designing

such systems. This dissertation contributes to the high-level design and mapping

of adaptive systems to reconfigurable hardware platforms, explaining concepts,

proposing techniques, and developing automated tools.

1.1 Adaptive Systems

Adaptive systems respond to environmental conditions, by modifying their pro-

cessing at runtime. For example, a driver assistance system can modify its analysis

algorithms based on lighting and road conditions [1] and a software defined radio

can modify its modulation scheme based on channel conditions [2]. In both these

cases, complex signal processing is required, and hence, a software implementation

would require powerful processing, making an embedded implementation infeasi-

ble. To support the radio and image processing throughput required for real time

implementations, hardware is required, but traditional methods do not offer flex-

ibility, which makes reconfigurable computing more attractive.

In recent years, research interest in adaptive systems has been increasing as more

application domains find ways to overcome environmental limitations through

modification of computation. The development of cognitive radio is a classic ex-

ample of this [3] and was motivated by the fact that available radio spectrum

for future communications is limited and the present allocation of the spectrum

is heavily underused at different times. In order to improve system efficiency, a

new radio technology was proposed, wherein a single radio can opportunistically

use different portions of spectrum at different times, all the while abiding by the

standards defined for each channel. While cognitive radios have often been pro-

totyped in software, a real deployment often needs a reduced footprint, requiring
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hardware processing. FPGAs have emerged as a promising platform, offering the

performance of hardware, with some of the flexibility of software.

1.2 FPGAs as an Adaptive Hardware Platform

Field Programmable Gate Arrays (FPGAs) are versatile integrated circuit chips,

whose functionality can be configured after manufacturing and are hence field-

programmable. FPGA functionality is determined by a special binary configuration

sequence called the bitstream, which can be loaded into its internal memory, known

as the configuration memory. The bitstream is generated by vendor design tools,

from a designer’s architectural description of a circuit. The process of altering

the logic implemented in an FPGA by means of loading a new bitstream is called

reconfiguration. A primary advantage of FPGAs is their on-site programmability.

Design errors detected even after system deployment can be corrected by config-

uring the FPGA using a new bitstream. Similarly, updates to the original design

can be made in-field when new functionality is required, or new standards ratified.

This flexibility can allow different functions to be implemented at different times,

through the use of multiple bitstreams.

The main building block of FPGA logic is the lookup table (LUT). A LUT is a

small memory-like element usually 1 bit wide and 16 or 64 bits deep. By storing

appropriate values in these elements, any Boolean function can be implemented.

FPGAs also contain programmable routing resources and switch boxes, which

make it possible to connect logic in a highly flexible manner. Dedicated rout-

ing resources are available for critical signals such as clocks and resets. Another

advantage of FPGAs is their programmable I/O pins, making them suitable for

interfacing with a variety of peripherals using different I/O standards. The key

enabler is that a designer can describe a detailed architecture at register-transfer

level (RTL), and the tools take care of decomposing the design into the basic logic

blocks, required routing, and I/O interfaces.
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Figure 1.1: Effect of spatial circuit multiplexing on chip size and resource
wastage (a) At time t1, only functions A, B, C and D are active (b) at time t2
only functions E, F, G and H are active. Implementing all functions simultane-
ously in a single chip requires a larger chip and causes higher resource wastage
when only a few are active at any point in time. The smaller chip shows that if
only the required modules could be “loaded” significantly less area is required.

FPGAs started as simple chips, mainly used for glue logic implementations, and

grew to fully-fledged programmable chips capable of implementing complete sys-

tems [4], thanks to the integration of built in hard-macros such as embedded

processors, DSP blocks and BlockRAMs. In recent years, FPGAs have been able

to successfully challenge dedicated hardware (ASIC) implementations of several

systems [5]. This is mainly attributed to their reprogrammability, increasing logic

density, and decreasing cost and power consumption. For moderate production

runs, FPGAs can be more cost effective compared to ASICs due to the very high

non-recurring engineering (NRE) cost associated with integrated circuit manufac-

turing processes.

We have discussed how an adaptive system may use different types of processing

in different conditions, and as a result, some functions will be mutually exclusive,

never being required simultaneously. For a traditional hardware design approach,

these functions would all be placed on the chip, with multiplexers used to choose

which is active at any point in time. However, this can significantly increase

area usage if the number of options and mutual exclusivity are high as shown in

Fig. 1.1. Larger chips cost more, and consume more power, and since a significant

number of functions may be unused at any point in time, this overhead is wasted.

With FPGAs, we have the option of using the time dimension to overcome this

overhead. The device can be reconfigured to contain only the necessary modules
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at any point in time. In this way, a smaller chip, with reduced power consumption

and cost can be used.

1.3 Partial Reconfiguration

Traditionally during an FPGA reconfiguration operation, the entire logic is re-

placed while the device is kept in a reset state. This full reconfiguration allows the

whole datapath to be modified or alternatively for an updated design to be applied

after system deployment. This can also be applied for adaptive systems, where

each possible functional configuration is implemented in a separate bitstream, and

at runtime, the most suitable is chosen and applied through reconfiguration. How-

ever, this requires that the full system pause operation, and a full bitstream to be

loaded, even for small changes. This can consume more time than necessary, and

can break external sensor interfaces, requiring more time for setup and calibration,

though designing and controlling such a system can be easy.

Instead, the approach that is more suited, is what is called partial reconfiguration

(PR), which offers more fine-grained flexibility. PR enables modification of only

portions of the FPGA logic by selectively changing part of the contents of the

configuration memory. Now, the FPGA is no longer required to be kept in reset

mode while being reconfigured making the reconfiguration dynamic in nature. So

portions of the user logic not being configured can continue to execute while the

reconfiguration is in progress.

Although conceptually different, partial reconfiguration and dynamic reconfigura-

tion are frequently interchangeably used in the literature to suggest support for

both. In this dissertation we use PR to refer to dynamic partial reconfiguration.

PR adds an additional dimension to the spatial location: time. With PR, the same

portion of the FPGA fabric can serve different functional units at different time

instances. In the context of adaptive systems, this means only the required func-

tional units need to be reconfigured when the system is reconfigured. Functional
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units shared by multiple datapaths can continue to operate without interruption

and the FPGA interface logic never requires reconfiguration.

PR was previously supported on only high-end devices, but is now supported in

all new FPGAs from Xilinx, and some from Altera. PR has remained a constant

research theme within the FPGA community since it was first mooted nearly two

decades ago. Its major advantages can be summarised as:

• The logic capacity of the FPGA is effectively increased, since several func-

tional units can use the same FPGA resources at different time instances

when their functions are mutually exclusive. This enables use of a smaller

FPGA, reducing overall system cost.

• For some applications, portions of the design remain inactive for long periods

during system operation. Nevertheless, this logic consumes power. Although

techniques such as clock gating can reduce power consumption, parts not

needed can be switched off using PR to further reduce power consumption.

• Since the size of partial bitstreams is often significantly smaller than the full

bitstreams, PR helps to reduce reconfiguration time.

• Using PR, functional units can be selectively reconfigured keeping the re-

maining functional units active and thus the system operational. This capa-

bility is critical for several types of adaptive systems.

The primary difficulty with PR is the complex design process. Even for many

experienced FPGA designers, PR remains difficult. It requires expertise in FPGA

architecture, spatial layout, and management of configuration. Hence, its adoption

has been slow.

1.4 Motivations

Adaptive systems on FPGAs are often designed using ad-hoc approaches, where

the system design and implementation are tightly coupled. This results from the
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lack of a systematic design methodology, and makes the design complex and hard

to modify. Since the designer has to worry about regions, partial bitstreams, the

reconfiguration operation, and more, all at the lowest implementation levels, they

become embedded deep in the design.

The increasing demand for adaptive systems with real-time performance, and at

the same time the lack of versatile tools for their hardware supported implemen-

tation is our primary motive for this research. Although PR based FPGA designs

are highly suitable for adaptive systems implementation in theory, the design bar-

rier excludes many system designers. In vendor PR tool flows, the designer has to

provide several manual inputs and the efficiency of system implementation greatly

depends upon these. These inputs generally target a specific FPGA architecture,

requiring the system designer to have expertise in FPGA architectures. Similarly

in order to optimise the design, the designer has to know the low level operations

performed during PR. Such an ad-hoc, manual design process is highly time con-

suming and generally leads to sub-optimal results. Target architecture dependency

makes PR an expert feature and makes it less attractive to system level designers.

We feel that the level of abstraction for PR-based adaptive systems design needs

to be increased to a functional level and only minimal architecture-dependent

features should be exposed to the system level designer.

Another important limitation of present PR based systems is the run-time manage-

ment. The particular configurations that the FPGA will operate in, under different

environmental conditions, must be explicitly coded by the system designer. This

includes information about specific bitstreams which should be used to configure

the FPGA under different circumstances. This again couples behaviour with spe-

cific implementation and is thus undesirable. Configuration management should

be abstracted, to allow where the system designer to focus on the application, not

the implementation. Automated tools should then determine lower level details

such as the bitstreams that needs to be configured.

The ideal flow would be for a designer to describe the adaptive system at block

level, using a library of available hardware blocks, then describing, at the same
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level, the dynamic behaviour of the system. Tools should then turn this into the

necessary bitstreams and translate the adaptation code at runtime to effect the

necessary configurations. It should then be easy for the designer to test the system

in a PR-enabled testbed that offers the necessary probes and runtime information

to monitor the system’s operation.

The past decade of PR research has mainly focussed on overcoming the limitations

of vendor tools. Most of this work try to optimise low level device-specific features,

still requiring architecture expertise. Some high-level tools have been proposed

aiming at task-level time-multiplexing of FPGA resources, but this is only one way

of using PR. There has been limited research in the direction of exploiting PR at

a system level. Research on Run-time management of PR systems still considers

reconfiguration in terms of bitstreams instead of a more abstract level. While we

acknowledge that certain restrictions of the low-level vendor PR tool flows do limit

efficiency to some degree, we see the poor abstraction as a more urgent issue as

it prevents PR from being used by system designers. The techniques we propose

can equally be applied above other research design flows, but we begin with the

official flows.

1.5 Objectives

The main objectives of this research are to:

1. Demonstrate how an adaptive system can be mapped using PR on an FPGA

and determine the design metrics that influence the quality of the implemen-

tation.

2. Determine how adaptive systems can be described in a way that can be

mapped to real implementation.

3. Develop techniques and tools to automate the PR design process including

partitioning and floorplanning, optimising for PR performance.
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4. Develop an abstraction layer to assist design-time and run-time processes

and management of PR systems.

5. Develop a verification platform which enables easier hardware validation of

PR systems.

1.6 Contributions

The main contributions of this work encompass tools, techniques, algorithms and

IP cores developed with focus on enabling easy adoption of PR in adaptive systems

development. These tools and techniques enable system designers who are not

FPGA experts to use PR with relative ease.

1. We have performed a comprehensive study of the partial reconfiguration

process, from both the tools and architectures perspective, including a de-

tailed architecture study of PR capable FPGAs. We have also identified the

metrics associated with PR as well as the limitations of current PR design

flows.

2. Efficient partitioning algorithms for PR based adaptive systems have been

developed. The algorithms consider an exact mathematical solution for rel-

atively smaller problems and a novel heuristic algorithm for larger problems.

3. An efficient floorplanning algorithm taking into account both the target

FPGA architecture and factors affecting PR has been developed. The al-

gorithm respects all the constraints imposed by the vendor tool chain and

hence can easily integrate with it.

4. A fully automated PR implementation tool flow has been developed by com-

bining our partitioning, floorplanning and new run-time management tech-

niques with the vendor tool chain. Our tool flow provides an abstract view

of adaptive systems which enables easier system development without delv-

ing into low-level implementation details. Our proposed techniques integrate
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with vendor tools rather than circumventing their restrictions which enables

easier adaptation as the FPGA architectures evolve.

5. We have developed a PR evaluation platform, enabling easier hardware val-

idation of PR systems using general purpose computers. The pre-built com-

munication and reconfiguration infrastructure enables faster system devel-

opment and lower verification time.

1.7 Thesis Roadmap

The remainder of this thesis is structured as follows:

Chapter 2 discusses the research background and key objectives guiding this work

and Chapter 3 presents a detailed literature survey on partial reconfiguration

covering architecture, design methodologies, tools, and applications. Chapter 4

presents our exact and heuristic algorithms for automated partitioning for partial

reconfiguration. Chapter 5 discusses automated floorplanning for partial reconfigu-

ration using Columnar kernel tessellation. Chapter 6 discusses PR reconfiguration

management and our custom high-speed reconfiguration controllers. Chapter 7

details our fully automated PR development flow targeting hybrid FPGAs. Chap-

ter 8 details our PR hardware evaluation testbed. Finally, Chapter 9 concludes

the work presented and outlines our future research directions.

1.8 Publications

Some of the work presented in this thesis has been written up in a number of

published and submitted papers:

1. K. Vipin and S. A. Fahmy, Efficient Region Allocation for Adaptive Par-

tial Reconfiguration, in Proceedings of the International Conference on Field

Programmable Technology (FPT), New Delhi, 2011.
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2. K. Vipin and S. A. Fahmy, Enabling High Level Design of Adaptive Systems

with Partial Reconfiguration, PhD Forum Poster, in Proceedings of the Inter-

national Conference on Field Programmable Technology (FPT), New Delhi,

2011.

3. K. Vipin and S. A. Fahmy, Architecture-Aware Reconfiguration-Centric Floor-

planning for Partial Reconfiguration, in Proceedings of International Sympo-

sium on Applied Reconfigurable Computing (ARC), Hong Kong, 2012, pp.

13–25.

4. K. Vipin and S. A. Fahmy, A High Speed Open Source Controller for FPGA

Partial Reconfiguration, in Proceedings of the International Conference on

Field Programmable Technology (FPT), Seoul, Korea, December 2012, pp.

61-66.

5. K. Vipin and S. A. Fahmy, Automated Partitioning for Partial Reconfig-

uration Design of Adaptive Systems, in Proceedings of the Reconfigurable

Architecture Workshop (RAW), Boston, USA, May 2013, pp. 172-181.

6. K. Vipin, S. Shreejith, D. Gunasekara, S. A. Fahmy, and N. Kapre, System-

Level FPGA Device Driver with High-Level Synthesis Support, in Proceed-

ings of the International Conference on Field Programmable Technology

(FPT) , Kyoto, Japan, December 2013, pp. 128-135.

7. K. Vipin and S. A. Fahmy, Automated Partial Reconfiguration Design for

Adaptive Systems with CoPR for Zynq, in Proceedings of the International

Conference on Field Programmable Custom Computing Machines (FCCM),
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agement on the Xilinx Zynq, to appear in IEEE Embedded System Letters
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9. K. Vipin and S. A. Fahmy, DyRACT: A Partial Reconfiguration Enabled

Accelerator and Test Platform, to appear in Proceedings of the International
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1.9 Open Source Releases

1. Reconfiguration controller for Virtex FPGAs. https://github.com/archntu/

prcontrol.

2. ZyCAP: A high performance ICAP controller and run-time PR manager for

Zynq SoCs. https://github.com/archntu/zycap.

3. FPGA Driver: A reusable FPGA design evaluation platform. https://

github.com/vipinkmenon/fpgadriver.

4. Library for PR based video/image processing filters https://github.com/

archntu/dyract/image_lib.

5. PR enabled test and co-processor platform https://github.com/archntu/

dyract.

6. Automated PR tool-flow https://github.com/archntu/copr

https://github.com/archntu/prcontrol
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https://github.com/archntu/zycap
https://github.com/vipinkmenon/fpgadriver
https://github.com/vipinkmenon/fpgadriver
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https://github.com/archntu/dyract
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Chapter 2

Background

Adaptive systems offer the capability to deal with uncertainty in system operating

conditions. An adaptive system can be considered as a collection of different

system operating modes, called configurations, of which only one is active at a

given point in time [6]. At runtime, changes in the operating environment can

cause the system to switch its configuration, called reconfiguration, to adapt to

the conditions. This adaptability can lead to more sophisticated applications as

well as improved performance. Some key application drivers for adaptive systems

include cognitive radios [2], smart camera systems [7], and adaptive security [8].

The flexibility awarded by software programming of a general purpose proces-

sor lends itself well to implementation of adaptive systems, and some frameworks

have been proposed [9]. However, when such systems must interact with the

physical environment, processing large amounts of data, and meeting real time

deadlines, software implementations can fail to deliver. Software adaptive systems

are often implemented on general purpose computers [10], making them unsuit-

able for embedded and portable applications due to their physical size and power

requirements. Instead, we can see that hardware processing could ensure the high-

throughput computation required, while the programmability of FPGAs can also

ensure flexibility is maintained.

14
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Figure 2.1: Multiplexed hardware system implementation. (a) Datapath uses
hardware blocks B, C and E by configuring the multiplexes (b) Datapath uses
hardware blocks A, D and F. The multiplexer control inputs can be managed

through software which configures control registers.

2.1 Hardware Adaptive Systems Implementation

Hardware implementations enable much better application acceleration compared

to software implementations while reducing overall system power consumption

and form factor. Specialised datapaths tailored for specific applications can be

implemented although designing such systems is more difficult.

One limitation generally attributed to hardware implementations is their limited

flexibility. Fixed hardware implementations (ASICs) can not modify their circuitry

once manufactured and a chip redesign demands huge financial investment and

longer turnaround time. This provides FPGAs a new opportunity due to their

re-programmability and lower design time.

To addresses datapath flexibility, both FPGAs and ASICs generally adopt a spatial

multiplexing approach. Here all the required functions (modules) are implemented

in hardware, and multiplexers are used to select between them at runtime. One

benefit of this approach is that designing such a system is comparatively simpler

than more advanced techniques. In fact, the insertion of multiplexers from a high

level description of the block connectivity can be automated. The multiplexer

select lines can be configured using software to select the required functions as

shown in Fig. 2.1. System reconfiguration is also very fast, since the multiplexer

can select between the different datapaths in a matter of clock cycles.

However, this requires all the functional units to be present on the device at

all times, increasing resource utilisation, and possibly requiring a larger FPGA

device than for other approaches. This also leads to increased power consumption.
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Figure 2.2: Parametric reconfiguration. Blocks A, B and C have a control
register which can be configured to alter functionality. The register content can
be modified under software control. The dataflow is from left to right.(a) By
configuring the control registers, the datapath implements functions A1, B3 and
C2 (b) By modifying the control registers, the datapath implements functions

A2, B2 and C1.

Additionally, a larger, more complex design, with very wide multiplexers can suffer

from reduced achievable operating frequency, reducing throughput. Finally, if

further functions need to be added at a later stage, a full re-implementation will

be necessary, possibly with increased resource requirements resulting in a different

device being necessary, and hence redesign of the full hardware system.

Another method is for the hardware designer to create flexible hardware blocks and

manage configurations through parametric reconfiguration as shown in Fig. 2.2.

For example in a radio system, a modulator block would be created to support

both QPSK and QAM modes, or an FFT block could support 1024 point or 2048

point FFTs by means of control inputs.

The benefit here is that parts of the functional units that are common to differ-

ent modes can be shared, and hence, resource consumption is decreased. This can

lead to decreased power consumption over a multiplexed implementation, and may

avoid impacting frequency due to being more compact. Additionally, reconfigura-

tion time would not be significantly increased over a multiplexed implementation.

The difficulty with this approach is that it requires significant effort on the part of

the hardware designer. They must analyse all the possible functional modes, and

then determine which parts of the datapath can be shared, before taking this into

account in low-level design. It is also not applicable in cases where the different

modes might be unrelated computationally, or where fixed IP is being used. Since

such IP might come from different vendors, and the low-level implementation is

not generally available, again, a multiplexed implementation would be necessary.
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Figure 2.3: Partial Reconfiguration with two partially reconfigurable regions
(PRRs) which host 3 and 2 modules respectively. The regions are reconfigured
using the corresponding partial bitstreams to implement the required modules.

2.2 Partial Reconfiguration

PR allows us to time-multiplex; that is, rather than select the active mode by

setting a multiplexer input to choose between different datapaths on chip, we

load different partial bitstreams into the predefined reconfigurable regions (PRRs),

depending on requirements, effectively replacing the modules at runtime. Fig. 2.3

illustrates this with two PRRs with the first region hosting three modules and the

second region hosting two modules.

This has the best resource utilisation, and hence power consumption, of all the

hardware reconfiguration methods, since only active hardware is present at any

point in time. Furthermore, power can be more tightly controlled as unused PRRs

can be blanked when not needed. The PR approach also allows changes after

system development, since another partial bitstream can be generated without

the whole system being reimplemented, as long as the interface is compatible.

The main stumbling block is that PR based systems are more difficult to de-

sign, primarily because the spatial arrangement of the FPGA must be taken into

account, and the tool flow is complex. In addition, the reconfiguration time is

higher, since partial bitstreams must now be loaded into the configuration mem-

ory to enable a configuration switch. PR requires not only software management

but dedicated hardware controllers which manages low level FPGA configuration

interfaces such as the internal configuration access port (ICAP) in Xilinx FPGAs.
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Figure 2.4: Two modules A and B have a larger operating mode (A1 and B1)
and a smaller operating mode (A2 and B2). If the modes A1 and B1 do not
coexist in the system operating modes (configurations), implementing them in
a single PRR (Fig. b) can save more resources compared to implementing them

in separate PRRs (Fig. a).

2.3 PR Design Challenges

The vendor PR implementation tool flow is significantly more complex than the

standard FPGA design flow. Designers must run multiple iterations of the tool-

chain to generate the required partial bitstreams. The tools also rely on several

detailed inputs from the designer, requiring greater understanding of the target

FPGA architecture. One task the designer must undertake is to partition the de-

sign. Partitioning involves determining the number of PRRs and assigning hard-

ware modules to them. To understand the importance of this step, consider an

example design shown in Fig. 2.4. Using a single region for each module’s multiple

modes results in more area usage than combining the modules into a single region

when only some combinations are required. Partitioning also has impact on the

reconfiguration time, since when a single module is reconfigured, we must recon-

figure the entire region to which it is allocated. Hence, determining the number of

PRRs and module allocation to them is not straightforward, and has a significant

impact on the area and reconfiguration time—two metrics that are of key concern

in adaptive systems.

Another manual step performed by PR designers is floorplanning, where the phys-

ical locations of the PRRs are determined. Similar to partitioning, floorplanning

can also signficantly impact implementation efficiency, and requires detailed archi-

tecture expertise from designers. The heterogeneous architecture of more recent

FPGAs make PR floorplanning more difficult than on previous architectures, and

many of the techniques proposed in the literature are only suitable for FPGAs
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1 Status = SD_TransferPartial (" prbit_region1.bit", ADDR , LEN);
2 PRAddress = ADDR;
3 Status = XDcfg_TransferBitfile(XDcfg_0 , PRAddress , LEN);
4 Status = SD_TransferPartial (" prbit_region2.bit", ADDR , LEN);
5 PRAddress = ADDR;
6 Status = XDcfg_TransferBitfile(XDcfg_0 , PRAddress , LEN);

(a)

1 Status = Set_Configuration(XDcfg_0 , dummy_config );

(b)

Figure 2.5: (a) Code snippet from present PR management software where
the partial bitstreams corresponding to each region is explicitly send to the con-
figuration interface for a system reconfiguration (b) A proposed reconfiguration

method where the low-level reconfiguration management is abstracted.

with repeated tile-based architecture. Inefficient floorplanning can lead to longer

reconfiguration times higher resource requirements.

One area where PR designs suffer compared to spatial multiplexing is reconfigura-

tion time. Along with design time optimisations for partitioning and floorplanning,

high-speed reconfiguration controllers are required to minimise the time taken to

switch configurations. Vendor-provided controllers have poor performance and

hardware designers are often forced to design custom reconfiguration controllers,

increasing design time and reducing productivity. A high-speed open-source re-

configuration controller could remove this burden and reduce development time,

as discussed in Chapter6.

Another challenge for PR based systems is runtime management, which is often

done in software. In present approaches, the software developer must be aware

of the way the PR system is implemented and must explicitly reference partial

bitstreams, as shown in Fig. 2.5(a). This means the hardware designer is often

also required to develop the adaptive software that controls the system. Rather, by

abstracting low-level reconfiguration aspects, runtime management can be raised

in abstraction so it can be reasoned about at the level of system configurations

instead of PRRs and partial bitstreams, with simpler control, as in Fig. 2.5(b).

This would enable system designers to develop adaptation algorithms independent

of the target hardware and make them portable across multiple implementations.
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2.4 Summary

Adaptation is becoming more important in a wide variety of application domains,

but software implementations on processors do not offer the required performance

when dealing with complex data and algorithms. Partial reconfiguration of FPGAs

is a promising technique for implementing such systems, since it combines some

of the performance of a custom hardware implementation with some flexibility

to support adaptation. The present PR design flow is, however, insufficiently

automated and relies several detailed inputs from the designer, requiring low-

level FPGA architecture expertise. Run-time management of such systems is also

typically done at a very low level that fails to abstract the PR details from the

adaptation programmer. Tools that automate and provide an abstract view of

adaptation can make PR more attractive for adaptive systems designers who are

not hardware experts. Our hope is that our work will spur more widespread use

of PR, and hence improvements in providers’ design flows.



Chapter 3

Review of Literature

In this chapter, we review the development of dynamic and partial reconfiguration

techniques over the years and the current state of the art in the area. Although

the terms dynamic reconfiguration and partial reconfiguration are frequently used

interchangeably in the literature, they can be different as discussed in Section 1.3.

Partial reconfiguration denotes the modification of a portion of the FPGA logic

while the remaining portions are not altered. This operation can be static or

dynamic, meaning that the reconfiguration operation can occur while the FPGA

logic is in a reset state (static) or running (dynamic). It is also not necessary that

all dynamic reconfigurations are partial in nature. For example in context switch-

ing FPGAs, the whole configuration is changed during reconfiguration, but the

operation is dynamic. In this chapter, we analyse different aspects of PR includ-

ing device architectures, design frameworks, PR development tools, optimisation

strategies, and applications.

3.1 Architecture

Conceptually all FPGA devices can be considered as being composed of two dis-

tinct layers: the configuration memory layer and the hardware logic layer [11]

21
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Figure 3.1: FPGA architecture.

as shown in Fig. 3.1. FPGAs achieve their unique re-programmability and flex-

ibility due to this composition. The hardware logic layer contains the hardware

resources of the FPGA, including lookup tables (LUTs), flip-flops, DSP blocks,

memory blocks, transceivers, and others. This layer also contains the routing

resources and switch boxes that allow components to be connected.

The configuration memory layer stores the FPGA configuration information, usu-

ally called a bitstream. This bitstream contains all the information that determines

the implemented circuit, such as the values stored in the LUTs, initial set and re-

set status of flip-flops, initialisation values for memories, standards of the input

and output pins, and the routing information for the programmable interconnect.

The function implemented by the hardware logic layer is wholly determined by

the values stored in the configuration memory.

Configuration memory is usually SRAM based and hence volatile. Flash-based

non-volatile configuration memory is present in some devices [12]. In order to

change the circuit implemented in the FPGA, a user modifies the contents of

the configuration memory by loading a new bitstream. This can be performed

externally using interfaces such as JTAG, or SelectMap [13], or internally using

specialised interfaces such as the internal configuration access port (ICAP) [14].

Dynamic reconfiguration was proposed to increase effective logic capacity and re-

duce reconfiguration time. Early on, the limited resource availability in FPGAs
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Figure 3.2: Multi-Context FPGAs increased effective logic capacity by using
more than one configuration memory plane.

was a major constraint when implementing large applications. Fetching config-

uration bitstreams from external memory to reconfigure over the (external) con-

figuration ports also resulted in slow reconfiguration. Early dynamically recon-

figurable architectures overcame these issues by increasing the number of con-

figuration planes, allowing much faster reconfiguration, and effectively increasing

logic capacity, as shown in Fig. 3.2. These devices were generally called context-

switching FPGAs or Multi-Context FPGAs (MC-FPGAs) [15].

3.1.1 Academic and Non-Commercial Architectures

The development of dynamically reconfigurable architectures dates back to 1995,

when R. T. Ong from Xilinx filed a patent for an FPGA which can store multiple

configurations simultaneously [16]. In the initial design, there were two configura-

tion memory arrays available in the FPGA which could store different configura-

tion data. During the first half of the user provided clock, the switches present at

the output of the configuration memory cells select the configuration data stored

in the first configuration memory array, and the logic and routing would be config-

ured accordingly. The results of the FPGA operation would then be stored in data

latches. During the second half, the switches would output the configuration data

present in the second array and logic and routing would be configured accordingly.

The data present in the data latches at the end of the first cycle could be used
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during this second cycle. At the end of second cycle, the FPGA would outputs

the results of its function.

This idea was further extended by Trimberger in 1997, who proposed a time mul-

tiplexed FPGA based on the Xilinx XC4000E product family [17]. Although com-

binational logic could be multiplexed among several contexts, state storage could

not. This work used micro registers to store the output of LUTs and flip-flops,

with eight configurations supported. Reconfiguration could be performed in a sin-

gle clock cycle, taking about 5ns. Different operating modes were supported; logic

engine mode used time multiplexing to emulate a large device, time sharing mode

emulated a number of independent FPGAs, and static mode stored the same con-

figuration data in different configuration planes, as well as a mix of these modes.

An inactive configuration plane could be modified at runtime by loading configu-

ration data from off-chip storage. A special “RAM” mode allowed user designs to

read and write to the configuration memory directly, allowing for self-modifying

hardware.

The main drawback of MC-FPGA architectures is their high power consumption.

Due to a large number of configuration bits and high switching activity, the power

consumption of these devices was in the tens of Watts for an average design running

at 40MHz, making them unsuitable for many applications. Chong et al. proposed

the reconfigurable context memory (RCM) to tackle the area and power overheads

of MC-FPGAs [15]. RCM exploits the redundancy and regularity in configuration

bits between different contexts. Their approach leverages a previous study which

showed that during context switching, less than 3% of the configuration data was

modified [18]. Additionally ferroelectric-based functional pass-gates are used in

RCM to achieve compactness and lower power. Their design claimed to reduce

the FPGA area to 37% of other MC-FPGAs and consume much lesser power.

One of the major restrictions for adopting MC-FPGAs was the lack of design

automation (EDA) tools, which could efficiently map applications to these plat-

forms. Designs had to be manually partitioned into multiple segments and mapped

to different contexts.
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Another early architecture proposed to support dynamic reconfiguration was the

Dynamically Programmable Gate Array (DPGA) [19]. DPGAs used traditional

4 input LUTs as the basic logic element, but each LUT and interconnect cell

had an associated 4-context memory implemented using DRAM. DPGAs were

mainly motivated by slow off-chip configuration loading which would take several

milliseconds to complete. DPGAs supported different usage models with multiple

independent functions in different configurations [20]. They supported temporal

pipelining, where multiple contexts are used to implement a single function by

time multiplexing. The prototypes developed had limited logic capacity, operating

frequency and a lack of automation tools. Using DRAM for configuration memory

also enforced a minimum operating frequency of 5MHz due to DRAM refresh

requirements.

The first practical context switching FPGA was developed by researchers at Sanders,

a Lockheed Martin company, on a 0.35µm process [21]. The device was called a

Context Switching Reconfigurable Computer (CSRC), and could store up to four

configurations concurrently. The device was composed of 16-bit wide data pipes

with each pipe composed of context switching logic arrays (CSLAs). Each CSLA

could process two 16-bit words and each CSLA was connected to two adjacent

CSLAs which made it possible to transfer data in both directions. The architec-

ture used three levels of routing for data to flow from any CSLA to any other

CSLA. Each CSLA was composed of 16 context switching logic cells (CSLCs) as

shown in Fig. 3.3. Each CSLC contained a four input lookup table, carry logic,

a context switching flip-flop and a tri-state buffer. A separate context switching
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RAM was used for storage. Each configurable resource, along with the routing,

was controlled by four configuration bits, of which one bit was active at any point

in time, thus implementing four configurable planes. The limited routing architec-

ture of this device made implementation of some applications impossible on this

architecture.

GARP was another dynamically reconfigurable architecture, that combined re-

configurable hardware with a standard MIPS processor [22]. The reconfigurable

fabric was a slave computational unit located on the same die as the processor.

Loading and execution on the reconfigurable array was controlled by a programme

running on the processor. The standard memory hierarchy of the processor was

also accessible to the reconfigurable fabric. The reconfigurable array was divided

into blocks and one block in each row was called a control block, with others called

logic blocks. The processor enabled an array by setting a clock counter. When

the clock counter reached zero, array execution would stop and the results would

be copied by the processor. GARP allowed partial array configuration down to

individual rows. A physical implementation of GARP was never made available

for practical use.

3.1.2 Commercial Devices Supporting PR

Among the major vendors, Xilinx’s FPGAs are the most popular devices support-

ing PR, as they have done for years. The first Xilinx FPGA to support partial

reconfiguration was the XC6200 series [23]. This device supported true dynamic

partial reconfiguration, allowing only a portion of the FPGA to be reconfigured

while the remaining portions continue functioning. This device contained only a

single configurable memory plane. Using a special interface, an external processor

could access any specific logic cell in the FPGA, and modify its configuration, with

the configuration SRAM mapped to the processor address space. Due to a regular

structure with every cell and its associated routing being similar, reconfiguration

was simpler with these devices than for modern ones. Recent FPGAs have highly

heterogeneous architectures and complex routing structures.
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Figure 3.4: Xilinx XC6200 architecture.

PR became more popular with the introduction of the Virtex-II [24] and Virtex-II

Pro [25] series of FPGAs from Xilinx. These FPGAs included built-in hard macros

such as Block RAMs and 18×18 embedded multipliers, for efficient implementation

of more complex circuits. It was possible to load new data to the configuration

memory while the remaining portions of the design continued to execute. A partial

bitstream could be loaded externally using the SelectMap or JTAG interfaces. In

Virtex devices, Xilinx introduced a new configuration interface called the Internal

Configuration Access Port (ICAP). This made it possible to load bitstreams from

within the FPGA fabric. A soft-processor or a custom state machine could fetch

configuration information from external memory and write to the configuration

memory through the ICAP.

In these devices, the configuration memory is organised in frames [26], with a

frame being the smallest unit of configuration, 1-bit wide and extending the whole

height of the device – hence the size of a frame is device dependent. A configuration

frame does not map to any single hardware resource, but it configures a narrow

vertical slice of many physical resources. Configuration frames are grouped into

six different configuration columns depending upon their hardware-mapping called

IOB, IOI, CLB, GCLK, BlockRAM, and BlockRAM Interconnect. IOB columns

are used for configuring the voltage standard for the I/Os. The CLB columns

program the configurable logic blocks, routing, and most interconnect. BlockRAM
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Figure 3.5: A bus macro showing the connectivity between the static region
and a reconfigurable region. The CLB slices to the left of the module bound-
ary are implemented in the reconfigurable region and those to the right of are

implemented in the static region.

configuration columns are used for programming the BlockRAM user memory

space.

For these devices, there are several restrictions on the size and shape of partial

reconfiguration regions (PRRs). They should extend the full height of the device

and, horizontally, they should align with a four slice boundary. These restrictions

can make a design inefficient in terms of hardware utilisation, but floorplanning the

regions is relatively simple. Tri-state buffers (TBUFs) have to be placed between

reconfigurable regions and the static region in order to manage the connectivity

between them.

The Virtex-4 family of FPGAs [27] incorporated some architectural improvements

over the Virtex-II. The unreliable TBUFs were replaced by bus macros [28], which

are composed of LUTs, as shown in Fig. 3.5. Since these could be placed anywhere,

as opposed to the fixed locations of TBUFs in the Virtex-II, this allowed for a more

flexible arrangement of connectivity. Each bus macro is composed of 8 CLB slices,

with 4 slices in the static region and 4 in the reconfigurable region. Separate types

of macros are available for connecting modules from left to right and right to left.

The size of frames was also reduced in the Virtex-4 [27]. Unlike the Virtex-II,

where frame size was dependent on device size, it is constant for all Virtex-4
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Figure 3.6: Xilinx Virtex FPGA architecture.

devices. Each frame is 1 bit wide and 16 CLBs high and contains forty-one 32-bit

words (1312 bits). The reconfigurable region also no longer needs to span the full

height of the device, but rather must be a height that is a multiple of 16 CLBs. The

ICAP interface width was also increased from 8 to 32 bits, considerably improving

reconfiguration speed.

In the Virtex-5 architecture, the entire device is divided into several rows and

columns as shown in Fig. 3.6. A row essentially represents a clock region and

device size determines how many there are. The columns, called blocks, span the

entire device height. Each block contains a single type of FPGA primitive such as

CLBs, DSP slices or Block RAMs arranged in a columnar fashion. The FPGA is

composed of several tiles where a block and a row intersect: CLB tiles, DSP tiles,

and BRAM tiles. One CLB tile contains 20 CLBs, one DSP tile contains 8 DSP

slices, and one BRAM tile contains 4 Block RAMs. In Virtex-5 FPGAs, a frame

configures sections that are the height of a device row [29]. The number of frames

used to configure each type of tile is shown in Table 3.1.

The number of bits in a frame is a constant, equal to 41 32-bit words or 1312

bits for Virtex-5 FPGAs. From Table 3.1, it can be calculated that a CLB tile

requires 47,232 bits for configuration, a DSP tile requires 36,736 bits, and a BRAM

tile requires 39,360 bits. Virtex-6 FPGAs follow the basic architecture of Vitex-5
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FPGAs with a CLB tile containing 40 CLBs, a DSP tile containing 8 DSP slices,

and a BRAM tile containing 8 18Kbit Block RAMs. For the Virtex-6, each frame

contains 81 32-bit words. Xilinx 7-series FPGAs (Artix, Kintex and Virtex-7)

also have a similar tile architecture with one CLB tile containing 50 CLBs, and

DSP and BRAM tiles containing 10 DSP slices and 10 18Kbits Block RAMs,

respectively.

Xilinx supports PR on new hybrid reconfigurable devices, such as the Xilinx

Zynq-7000 SoC too. The Zynq architecture [30] couples a powerful ARM Cortex

A9 processor, standard communication infrastructure, and an integrated recon-

figurable fabric, as shown in Fig. 3.7. The ARM processor communicates with

on-chip memory, memory controllers, and peripheral blocks through AXI inter-

connect. Together, these hardened blocks constitute the Processor System (PS).

Tile Type FPGA family

Virtex-5 Virtex-6 7-series

CLB 36 36 36

DSP 28 28 28

BRAM 30 28 28

Table 3.1: Tile types and number of frames in Virtex FPGAs.
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The on-chip PS is attached to the Programmable Logic (PL) through multiple

AXI ports, offering high bandwidth between the two key components of the ar-

chitecture. The PS processor configuration access port (PCAP) supports full and

partial (re)configuration of the PL. The reconfigurable fabric of the Zynq uses the

7-series FPGA architecture which can be partially reconfigured through an ICAP

interface also.

Altera recently began supporting PR on their Stratix-V series FPGAs. Partial

reconfiguration is supported for logic elements, DSP slices, memory blocks, and

routing resources. Other primitives such as PLLs and transceivers support only

dynamic reconfiguration (not using reconfiguration frames) through a special re-

configuration port tied to these primitives. The Stratix-V architecture is similar

to that of the Xilinx Virtex FPGAs, with reconfigurable frames being the unit of

reconfiguration [31]. Similar to the Xilinx Virtex-II, the FPGA is divided into mul-

tiple columns but only a single row. This results in additional restrictions when

a PR region does not span the full device height and contains memory blocks

as shown in Fig. 3.8. During a partial reconfiguration operation, the contents of

memory blocks outside the PR region but in the same columns are also recon-

figured. To avoid this issue, PR regions should span the entire device height or

memory blocks above and below the PR regions should not be used by static logic
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or other PR regions.

Previously other FPGA vendors such as National Semiconductors [32], Lattice

Semiconductors [33] and Atmel [34] supported PR for their FPGA devices. How-

ever, they no longer support PR, partly due to the limited adoption of this tech-

nique for practical applications and partly due to the better architecture and EDA

tools available from their competitors.

Tabula [35] also produces programmable logic devices that use a technique known

as Spacetime technology. In a Spacetime device, logic, memory, and interconnect

resources are dynamically reconfigured up to eight times in each user cycle, similar

to context-switching FPGAs. The Spacetime compiler automatically maps, places,

and routes a user design into the device using standard VHDL/Verilog inputs and

flows. To enable rapid reconfiguration, configuration data is stored locally beside

the resources it controls and this local configuration memory appears like a stack.

As each configuration is read from the top of the stack, the next configuration rises

to the top, and the current configuration goes to the bottom of the stack, with

the process repeating continuously. A major limiting factor of previous context-

switching FPGAs was their power consumption. Tabula claims to have overcome

this through new manufacturing techniques, however, exact power consumption

measurements for these devices are not yet available in the literature.

3.2 Design Methodologies

In this section we review the design methodologies for PR systems and the sup-

porting tools developed to simplify system implementation. We will review design

methods from both industry and the research community.

3.2.1 Vendor PR Design Flows

The first major FPGA vendor to support PR was Xilinx, with the introduction of

the Virtex-II in 2003 [24]. Altera announced support for PR from their Stratix-V
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series FPGAs onwards [36]. The tool flow offered by both vendors is similar with

slight differences arising due to the different architectures.

3.2.1.1 Xilinx PR Flow

Xilinx supports PR through a hierarchical module-based design tool called PlanA-

head [37]. Each PR design is composed of number of modules, or functional units,

for example a filter. All modules are described using a hardware description lan-

guage (HDL) or can be pre-synthesised netlists.

The overall PR design is composed of two parts, the static region and one or

morereconfigurable regions. A static region is the portion of the design, which

does not change its functionality during system operation. This usually contains

a processor running the reconfiguration management software, internal configu-

ration interface and memory interface modules. Partially reconfigurable regions

(PRRs) implement the reconfigurable modules, and can be reconfigured at run-

time. A single reconfigurable region can implement a number of modules in a time

multiplexed fashion.
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The first design step is to decide on the number of reconfigurable regions and

corresponding module allocation to them. Modules can be hand coded or use

standard IP blocks from a library such as Xilinx CoreGen. Each individual module

is synthesised using the XST tool to generate the netlists. Floorplanning must

then be performed manually. Regions of the FPGA must be allocated, containing

sufficient resources for implementation of any module assigned to them. These

regions must be rectangular in shape and should be aligned to tile boundaries.

Unaligned regions can also be implemented, but this requires additional circuitry,

since if partial tiles are to be reconfigured, a read-modify-write back mechanism

must be implemented to maintain state in other parts of the tiles. This also results

in higher reconfiguration time. Hence, generally tiles are not shared between

reconfigurable regions.

The designer then works out the combinations of the modules required for data

processing, where each valid combination is called a configuration. Finally the

tools generate a full reconfiguration bitstream as well as partial bitstreams for

each reconfigurable region, for each configuration. To help meet timing, the con-

figuration with highest resource consumption is implemented first and the routing

is preserved in the subsequent implementations. The implementation tools au-

tomatically insert bus macros to preserve the routing routing between the static

logic and PR regions.

Xilinx previously offered a difference-based partial reconfiguration flow [38]. This

allowed small changes, by editing a design using the FPGA Editor software. Im-

plementation tools would then generate a partial bitstream containing only the

difference between the new and old designs. This flow is no longer supported for

PR designs.

To manage FPGA reconfiguration at run-time using the generated partial bit-

streams, the designer typically includes a processor to control the process, and

writes software code specifying the different conditions under which reconfigu-

ration should happen and the specific bitstream for each PRR which should be
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reconfigured. This means the software developer must be aware of how the de-

sign is partitioned and which bitstreams correspond to each region for different

configurations.

3.2.1.2 Altera PR Flow

The Altera PR flow is supported through their Quartus-II software [39]. Altera

refer to programming frames and call configurations revisions. Module variations

implemented in the same PR region are called personas.

Two different PR implementation schemes are possible, depending on the arrange-

ment of reconfigurable regions. The SCRUB mode is used when programming

frames (extending the height of the device) are not shared between PR regions.

In this mode, the unchanged configuration bits of the static region are scrubbed

back to their present values. All configuration bits corresponding to PRRs are

overwritten with new data irrespective of what was previously contained in the

region(s).

The two-pass AND/OR reconfiguration scheme is used when configuration frames

are shared among multiple PRRs as shown in Fig. 3.10. In the first pass, all the

bits in the programming frame for a column passing through a PRR are ANDed

with 0’s while those outside the region are ANDed with 1’s. After the first pass,
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all configuration bits corresponding to the PR region are reset. In the second pass,

for each frame, new data is ORed with the current value of 0 in the PR region,

and in the static region, bits are ORed with 0’s. The main drawback is that the

bitstream size of a PR region using the AND/OR scheme can be twice the size

of one using SCRUB mode. Furthermore to individually configure PRRs when

regions share programming frames, multiple variations of bitstreams equal to the

Cartesian product of personas are required. Since in Xilinx FPGAs, configuration

frames do not extend the full device height, this limitation exists to a more limited

extent as PR boundaries are drawn along device rows. Since the Altera PR flow

is still new, we may see similar improvements to those seen in the Xilinx flow in

the coming years.

3.2.2 Academic PR Development Tools

In this section we discuss some of the academic tools developed to support PR.

Most of these tools target Xilinx FPGAs and many use vendor tools for placement

and routing, and bitstream generation.

3.2.2.1 OpenPR Tool Flow

OpenPR is functionally close to the Xilinx PR design flow [40]. It relies upon the

logic and wiring database and the bitstream manipulating capabilities provided

by another open-source FPGA development tool called Torc [41]. The overall flow

is shown in Fig. 3.11. A user initially creates an XML project file, specifying

the design name, static design filesystem path, path to the constraints file (UCF),

target device name, etc. Xilinx’s PlanAhead tool is then used to manually floorplan

the reconfigurable regions. The OpenPR tool then generates the static design by

generating placement constraints, generating blocker routes to prevent the static

region from using routing resources in the PR regions, and merging the blockers

with the static design. Later, the clock tree routing information from the static

design is inserted into the reconfigurable modules. This is done by manipulating
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Figure 3.11: OpenPR tool flow [40].

some of the intermediate files generated by Xilinx implementation tools. Finally,

the partial bitstreams are generated with the help of Xilinx bitstream generation

tools.

The major attraction of OpenPR is its availability as an open source development

platform. It also enables independent implementation of the static and reconfig-

urable modules. In other words, any modification in the static region does not

necessitates reimplementation of all PR modules.

3.2.2.2 GoAhead Tool flow

GoAhead attempts to overcome some of the limitations of the Xilinx incremental

PR design flow. In the incremental flow, the static part of the system is imple-

mented first, and partial modules are implemented incrementally over the static

part. Hence, routing between the static logic and PR regions is fixed using bus
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Figure 3.12: GoAhead PR tool flow [42].

macros, as discussed in Section 3.2.1.1. This means any modification in the static

logic requires complete re-implementation of all the PR modules. Since static

routes are allowed to pass through reconfigurable regions in the Xilinx flow, mod-

ule relocation between PR regions is also not feasible. GoAhead tries to overcome

these issues.

The overall GoAhead tool flow is shown in Fig. 3.12. The static and reconfigurable

modules are implemented through independent design flows. The designer makes

an initial plan defining the static parts of the design and modules which will be

reconfigured. Then, via a GUI, the design is floorplanned and bounding boxes are

drawn around PR regions. GoAhead then implements the static portion of the

design, while masking the PR regions with blocker macros that occupy all wires

inside the PR regions, thereby preventing static nets from crossing PR regions.

The reconfigurable modules are implemented in a similar fashion, where the blocker

macros prevent wires crossing from PR regions into the static region. Finally

vendor tools are used to generate partial and full bitstreams from the routed

design.

The major difference between GoAhead and OpenPR is that GoAhead uses blocker
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macros to control clock signals in the PR regions and uses vendor tools to generate

the final clock tree. In OpenPR, the tool adds the clock tree routing without using

vendor tools. OpenPR and GoAhead can help overcome some of the limitations

of the vendor flows, but do not address the high-level/abstract design issues, re-

quiring expert FPGAs designers. Both these tools manipulate Xilinx’s XDL files

to manipulate the placement of blocker macros. Dependence on XDL is a problem

as its discontinuation has been announced for future FPGA families and software

releases.

3.2.2.3 Other PR Implementation Tools

There have been other more specific tools and methodologies to help in designing

and mapping PR systems. There have also been models proposed for optimising

PR systems [43, 44]. Many of these have not been publicly released, or rely on

hypothetical architectures, and hence they have not gained widespread adoption.

The Caronte methodology [45] takes a fixed task-graph as input and determines

how to allocate tasks to the regions specified by the designer in order to com-

plete execution of the application with dynamic loading of tasks. The designer is

assumed to have determined how many regions to use and to have floorplanned

them. Runtime management is done using an embedded processor.

A set of CAD tools for PR was developed by Robertson and Irvine [46]. These

tools include options for design specification, simulation (functional and timing),

synthesis, placement and routing, partial configuration generation and control of

partially reconfigurable designs. The tools, for simulation, placement and bit-

stream generation, target older generation FPGAs and none are publicly available

to the research community.

The GePaRD flow [47] tries to enhance the Xilinx PR flow with a high-level

synthesis framework. The flow uses a high-level specification of the PR system

as input and generates both a system model for simulation and a physically-

aware architecture description as input for implementation on the target device
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using the Xilinx PR design flow. The design flow includes template abstraction,

high-level synthesis, and temporal modularisation. The authors do not specify

how the output of the proposed framework can be integrated with the vendor

toolflow to generate real systems. It targets a virtual architecture that adapts to

the reconfiguration mechanisms of a dedicated target device, but this mapping is

not explained.

An object-oriented framework for PR design and implementation was presented

by Abel [48]. It consists of a software-to-hardware compiler, an NoC with reliable

data buffering, a merger, and an adaptive scheduler and a Java emulator. Although

this framework provides some abstraction of runtime management for PR systems,

the hardware implementation is entirely based on the Xilinx toolflow, requiring

manual partitioning and floorplanning.

The design framework in [49] defines an adaptive system with two planes. The

data plane implements the data processing, such as the signal processing in a

radio, and can be composed using a high level tool that stitches together blocks

from an IP library. The control plane implements the management and control

functionalities in software. The control plane can reconfigure the data plane as

needed, from software code written by an adaptive system designer. This frame-

work only supports a single reconfigurable region and suffers from moderate data

throughput due to the low-bandwidth link between software and hardware.

Another layer-based architecture is presented by Tan and DeMara in [50]. The

hierarchical framework considers three aspects: autonomous operation, task-level

modularity, and runtime scenario support. The different layers are the logic layer,

the translation layer, and the reconfiguration layer. The logic layer supports gen-

eral user-level applications, carrying out hardware-independent logic control on the

tasks running on the FPGA. The translation layer translates logic descriptions for

the tasks into specific physical details as reconfiguration data (bitstreams). The

reconfiguration layer includes the hardware platform and the low-level commu-

nication APIs. The framework targets generic FPGA implementations without

detailing practical implementation on commercially available FPGAs.
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Tool High-level
Spec.

Partition-
ing

Floorplan-
ning

Low-level
implemen-

tation

Run-time
mgmt.

Xilinx [37] # # G#  #

Altera [39] # # G#  #

OpenPR [40] # # # G# #

GoAhead [42] # # G# G# #

Caronte [45] G# G# # # G#

GePaRD [47]  # # # #

Abel [48]  # # # #

Robertson [46] # # # G# #

Table 3.2: Comparison of Features Supported by Different PR Tools. # : No
automation, G# : Partial automation or support,  : Full automation or support.

Table 3.2 summarises the features supported by the different PR development and

implementation tools. In [48] and [47] PR systems are described in high-level pro-

gramming languages such as C. Here, tasks executed by the system are modelled

as C functions and the tools extract the task graph from the high-level language

description. Caronte [45] claims to support high-level system modelling and auto-

matic partitioning into software and hardware tasks, but the exact methods used

are not discussed in any detail.

None of the available methods takes care of automatic partitioning of modules into

multiple PRRs, with reference to system configurations. Either the designer has to

manually determine the number of PRRs in the system and make the correspond-

ing module assignments or the tools require information regarding the number of

PRRs in the FPGA. For both Xilinx and Altera PR tools, manual floorplanning

is required although a GUI based FPGA layout is available. None of the the other

methods automates floorplanning, but GoAhead offers some support through its

GUI interface linked with Xilinx PlanAhead. GoAhead and OpenPR perform

partial low-level implementation by manipulating the intermediate files used by
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Xilinx implementation tools. Other tools depend upon vendor-provided tools for

low-level implementation, and this must be done by the designer, manually. Only

[45] supports partial run-time management using an embedded Microblaze pro-

cessor to control PR regions that house independent accelerator tasks.

It is clear that none of the available methods for PR-based system design offers

an end-to-end design flow, making the use of PR difficult for non-experts. This

serves as our motivation in this thesis; we aim to address all aspects of the design

flow, offering a framework that is usable by non-FPGA experts who wish to use

PR to facilitate dynamic adaptation in hardware systems.

3.3 Low-Level PR Control Techniques

The limitations imposed by the vendor tool flow can significantly impact design

efficiency. For example, each generated bitstream is only suitable for a single

placement location on the FPGA: if a design requires a module to be placed in

different places at different times, multiple bitstreams are required for the same

module. Modules must also be implemented in a pre-defined region: if some modes

use less area, that is wasted while they are loaded. As a result of these issues,

much research has been undertaken to try and improve PR performance or reduce

some of the overheads associated with PR. However, many of these techniques

have become obsolete due to evolving FPGA architectures and a reduced amount

of detailed architecture information released by vendors.

3.3.1 Runtime Placement

While the vendor flows impose fixed regions within which modules are loaded, oth-

ers have explored how modules might be dynamically placed at runtime. Bazarghan

et al. considered this as an on-line bin-packing problem [51]. Later, Lu et al. intro-

duced an algorithm for online task placement [52]. Both these approaches assume

FPGAs to have a homogeneous architecture, allowing modules to be freely placed
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in any location. Practically, FPGAs have heterogeneous architectures, especially

more recent devices, and connectivity between the modules must somehow be pre-

served while relocating them. Due to the complex routing architecture of FPGAs,

preserving routing is a very difficult problem to solve, which these approaches have

not addressed.

Another method for online placement and removal of modules on Virtex-II FPGAs

was presented in [53]. The approach performs the necessary routing to disconnect

and connect modules to others already present in the fabric. Before assigning a

new module to a region, the interface of the previous module is unrouted to prevent

any damage. However, this work only considered designs using CLBs exclusively.

Sandors et al. proposed a method to improve the placeability of modules with the

help of defragmentation [54]. Repeated placement and removal of modules without

placement constraints might cause free space to become fragmented, preventing

the allocation of new modules. A suitable defragmentation algorithm maximises

the continuous free-space available for module placement. Defragmentation was

also used in [55] to ease the relocation of modules. In [56], a method is proposed

for increasing the placeability of reconfigurable modules. The authors consider

regions consisting of reconfigurable tiles, supporting heterogeneous resources such

as BRAMs and DSP blocks. The algorithm defines the set of feasible positions

for PR modules and optimises the regions to minimise the degree of overlap with

other regions.

Another method for improving placeability is described in [57], targeting Virtex-4

FPGAs. The technique utilises a compatible subset of resources in non-identical

regions, making it possible to place modules in non-identical regions.

Several tools have been developed for online module placement targeting different

FPGAs. PARBIT (PARtial BItfile Transformer) was a widely used tool targeting

Virtex-E FPGAs [58]. Modules could be relocated by manipulating the contents

of a partial bitstreams. To generate a new placement, PARBIT reads the configu-

ration frames from the original bitstream and copies to the new partial bitstream
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only the configuration bits related to the new area. It then generates new val-

ues for the configuration address registers. REPLICA (RElocation Per onLIne

Configuration Alteration) [59] was another tool targeting Virtex-E FPGAs. It is

implemented on the FPGA itself and performs address manipulation for reloca-

tion at run-time. Replica2Pro [60] was an advanced version supporting Virtex-II

and Virtex-II Pro FPGAs. It also supported relocation of BRAMs and multiplier

blocks.

The major disadvantage of online place-and-route tools is their lack of portability.

Due to architectural variations, the tools must be modified for each device, even for

different FPGAs in the same device family. The low-level details of configuration

frame contents available from Xilinx has also considerably decreased since the

Virtex-5 FPGAs, which would require significant reverse engineering. Even for

FPGAs before the Virtex-5, researchers used trial and error to find the detailed

mapping of individual configuration bits. Hence, most of these tools support very

few FPGAs belonging to the same family. Support tools such as JBits [61] are no

longer endorsed by Xilinx.

We feel that it is more productive to use the vendor-provided tools for lower-level

architecture dependent operations such as placement. The real design challenge

is at the higher levels, in how one describes the system and abstracts away the

physical design. By focusing at the higher levels, and integrating with supported

tools, the results of our work are more likely to be compatible with future devices.

3.3.2 Overhead Reduction

Bitstream compression is a widely used technique for reducing reconfiguration

time. In [62], the authors exploit redundancies both within a configuration bit-

stream as well as bitstreams of different configurations. Their analysis shows that

frames configuring CLBs have a high degree of mutual similarity. Huffman encod-

ing is also used to compress the bitstreams. [63] and [64] present an algorithm to

compress bitstreams for Xilinx XC6200 FPGAs, reducing configuration time by
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a factor of 4. The algorithm generates a new configuration file from the original,

with fewer configuration writes by using the wildcard registers present in FPGAs.

[65] and [66] present algorithms for bitstream compression for Virtex FPGAs using

different compression techniques such as Huffman coding, Arithmetic coding, and

LZ coding, among others.

Bitstream compression is useful in reducing configuration time when bitstream

transfer time from external memory to the FPGA is considerably higher than the

time taken to send the bitstream to the configuration memory. Otherwise, since

the compressed bitstream must be decompressed before final reconfiguration, the

effective reconfiguration time may increase. Presently, FPGAs use high-speed

external memory devices such as DRAM for storing bitstreams, and the commu-

nication throughput supported is much higher than the maximum reconfiguration

throughput (400MB/s). Hence, bitstream compression has limited practical ap-

plication in reducing reconfiguration time. A better solution for this problem is

to increase the speed at which data is written to the configuration memory. It

is worth noting that FPGA vendors support custom bitstream compression tech-

niques, which does not require decompression before reconfiguration. For example,

Xilinx tools use a special register in the ICAP called multiple frame write register

(MFWR) to configure repeating frames in the bitstream to different configuration

memory locations. Thus frames which are repeating are removed from the bit-

stream with a special instruction to use MFWR to configure the corresponding

configuration memory locations.

Configuration caching is another method suggested for reducing reconfiguration

time. Using the technique described in [67], tries to minimise reconfiguration

time in the case of a task sequence that must executed in a fixed number of

reconfigurable regions. Simulated annealing is used to determine the allocation

that minimises reconfiguration time, leading to reductions by a factor of 5. For PR

platforms executing task level configurations, optimal scheduling algorithms are

also developed for minimising reconfiguration time [68, 69]. Such techniques only

apply in the case of using PR to switch tasks in a fixed-sequence implementation.

For dynamically adaptive systems, we do not know the transitions or specific order
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up front, so such techniques cannot be applied. Optimisations at the allocation

level must be made taking into account information on valid transitions and, if

available, the frequency of those transitions.

3.4 Applications of Partial Reconfiguration

A number of applications have been developed which exploit the unique charac-

teristics of PR. Some applications fit the concept of partial reconfiguration very

well, while others benefit from improved efficiency through the use of PR.

3.4.1 Communication Systems

A popular application of PR is in software defined radio (SDR) [3], where combin-

ing flexibility with hardware performance makes PR attractive. Frameworks for

building SDRs on PR-enabled FPGAs have already been proposed [2, 70, 71]. Cog-

nitive radios are more advanced types of SDRs that modify their own functionality

at runtime in order to operate more efficiently in unknown environments. Modifi-

cations of the modulation scheme, encoding format, filters, and more at runtime

necessitate low power hardware implementations that are also flexible. In exper-

imental work, radio designers will often use PCs to implement the radios, using

software running on GPPs, but for large deployments and experiments, a smaller

footprint can only be achieved with hardware implementation. In [70], the authors

suggest decomposing a cognitive radio into two parts: The Processor Subsystem

(PS) integrates the hardware modules required to run a standard Linux operating

system, while the Customisable Processing Subsystem (CPS), implements compo-

nents with high computational requirements. Flexible implementations of specific

radio blocks have also be demonstrated [71].
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3.4.2 Multimedia

PR has also been used in audio and video processing applications. Processing cores

such as MP3 decoder [72], JPEG encoder [73] etc. are already implemented using

PR. For both implementations, the major motivation for using PR is to minimize

the total resource requirement as the logic availability in old generation FPGAs

were quite limited. It was demonstrated that operations such as JPEG encoding

can be temporally partitioned into smaller tasks, which can be sequentially config-

ured in the same PR region. In [74], a PR based scalable H.264/AVC deblocking

filter architecture is described. The filter adapts to different users’ requirements

intelligently. A real time video processing system using PR is described in [75].

Different types of image processing filters such as mean and median filters are

implemented in the same reconfigurable region so that the resource requirement

and power consumption are reduced.

3.4.3 Aerospace Applications

A hurdle in the use FPGAs in space applications is the effects of Single Event

Upset (SEU) [76]. An SEU is a change of state caused by ions or electro-magnetic

radiation striking a sensitive node in a micro-electronic device such as semiconduc-

tor memory. SRAM based FPGAs such as Xilinx and Altera FPGAs are highly

vulnerable to SEUs, which can lead to corruption in the configuration memory and

serious system damage. PR has been proposed as a method for mitigating SEU

effects on SRAM based FPGAs [77, 78, 79, 80], since it provides an auxiliary path

to the configuration memory. In [77], authors partition the FPGA into a number

of regions in order to isolate SEU errors, then apply duplication with comparison

to ensure a correct computation. Once an error is detected, that region is recon-

figured. Another simple method to overcome SEUs using PR is by configuration

scrubbing [79]. Here, the configuration data is stored in a radiation hardened

memory and a configuration controller configures potions of the FPGA using this

memory periodically, called blind scrubbing. In a more advanced method, the
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configuration controller reads data from the FPGA and detects the presence of

an error and writes back configuration data only if an error is present. Advanced

SEU mitigation using both PR as well as traditional triple modular redundancy

(TMR) methods have also been suggested [81].

3.4.4 Networking

PR also finds applications in networking. Within space applications, [82] describes

the implementation of the System-on-Chip Wire (SOCWire) architecture on a

partially reconfigurable Virtex-4 FPGA. SOCWire is well a established network-

on-Chip protocol in the space community, supporting link initialisation, credit-

based flow control, detection of link errors, link error recovery, hot-plug ability,

etc. The dynamic characteristic of this protocol makes it an ideal candidate for

PR based implementation.

A packet processing system called Field Programmable Port Extender (FPX) also

uses PR [83]. FPX contains logic to transmit and receive packets over a network

and dynamically reprogram hardware modules and route individual traffic flows.

The reconfigurable virtual network presented in [84] combines several partially-

reconfigurable hardware virtual routers with software virtual routers. Hardware

virtual routers are configured using dynamic reconfiguration. Functions such as

header verification, checksum verification, IP lookup, ARP lookup, and time to

live (TTL) updates, etc., are implemented in PR regions. All these functions can

be implemented in a single region since they operate sequentially on a packet. The
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forwarding table for the virtual router is also stored in PR regions and this can

be updated via a PCI bus using host software. This study shows that network

implementation based on PR gives better flexibility and forwarding performance

compared to fixed hardware implementation.

In [85], the authors propose a method for power saving in networks by changing

the implementation of the same function under different conditions. By closely

monitoring the environmental changes and adapting the implementation according

to it, network power consumption can be reduced. The network environment

changes depending upon the number of users, time of day, distance from the

central node, etc. Power reduction not only reduces system running cost but also

improves reliability due to lower thermal footprint.

3.4.5 Automotive Systems

Researchers have shown the potential of PR in automotive applications, especially

in driver assistance systems [86]. Since vehicles have a very long life, and fre-

quent upgrades are not possible, and given the rapid development of approaches

for driver assistance, PR on FPGAs offers the benefits of realtime video process-

ing with the flexibility to upgrade in future. In [1], the authors present a system

that uses a Power PC processor for control and management, with different im-

age processing functional units implemented as co-processors, loaded dynamically

as needed. Researchers have also proposed enabling redundancy in automotive

electronics through PR [87]. Here redundant electronic control units (ECUs) are

implemented in PR regions, and whenever an error condition is detected, the cor-

responding region is reconfigured to recover from the error, while a redundant

ECU with reduced performance acts as a backup.

3.4.6 Computational Science

PR has also been used extensively in high energy physics experiments. It was

used in the Compressed Baryonic Matter (CBM) experiment conducted at the
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Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany [88].

This experiment used an Active Buffer Board (ABB) for receiving, buffering and

forwarding hit data. In a high energy physics experiment, the surrounding con-

ditions can change. Thus, it was required that the ABB functionality change

post-installation. PR was also used in the ALICE experiment conducted in the

CERN Large Hadron Collidor (LHC) [89]. Special photo-detectors were used to

monitor particles generated by the collisions in the LHC. A collection of 120 Xilinx

Virtex-4 FX FPGAs with PR were used for first level processing and data reduc-

tion on the photo-detector outputs. PR is used to reconfigure FPGA functionality

without breaking communication with the host server over PCI Express.

3.4.7 Computing Systems

The dynamic instruction set computer (DISC) [90] supports demand-driven mod-

ification of its instruction set. Each instruction is implemented as an independent

circuit module, and these are paged into hardware in a demand-driven manner

as dictated by the application programme. Hardware limitations are eliminated

by replacing unused instruction modules with usable instructions at run-time.

The concept of high-performance reconfigurable computing (HPRC) has also been

proposed [91]. Here, the FPGA takes on a significant portion of a large scientific

application, with PR allowing the fabric to be used by different computational

steps at runtime.

In [92], autonomous computing systems were discussed, with placement and rout-

ing implemented on the FPGA fabric itself, allowing the FPGA to create new

bitstreams. The main challenge is the logic overhead of implementing these tools

and the slow speed of creating new bitstreams.

3.4.8 Machine Learning

PR has been successfully applied to pattern recognition and computer vision. [93]

presents an on-line evolvable pattern recognition system, where the classification
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module is dynamically evolved using PR. Here a processor configures a PR region

with different classification modules to evaluate the input pattern. In [94], the Ad-

aBoost algorithm for human detection is implemented on a Virtex-4 FPGA using

PR. Two computationally intensive tasks, integral image computation and feature

extraction/decision, are alternately implemented in a single PR region. The out-

put of the first operation is used as the input for the second. The reconfigurable

implementation uses significantly fewer resources than a static (multiplexed) im-

plementation.

3.5 Summary

PR has evolved significantly over recent years, and found use in a diverse range of

applications. The design of PR systems remains hard, and hence, only accessible

to FPGA experts. Many of published techniques for overcoming the limitations

of vendor tools are now defunct, as a result of the increasing heterogeneity of

modern devices, and less open access provided by vendors. Since many techniques

are also heavily tied to specific architectures, with their evolution, the tools become

unusable.

We believe the key implementation challenges are as a result of poor abstraction,

and a design flow that demands FPGA expertise. Hence, it is better to make

used of the vendor flow, but augment it with the required high-level design and

automation features, thereby opening up PR design to non experts, while also

ensuring some portability. When applying PR in the context of adaptive systems,

only limited information is available in advance, and this must be used to improve

mapping, while also maintaining the required flexibility. A flow that allows an

adaptive system designer to work at a modular level, without the need for deep

understand of the architecture or mechanisms of PR would open up the use of PR

in many new applications.



Chapter 4

Partitioning for Partial

Reconfiguration

4.1 Introduction

Determining the number of reconfigurable regions (PRRs) to use in a design and

how to allocate specific modules to them constitutes the design partitioning phase.

We saw in Chapter 2, that choices made during partitioning can significantly

impact both resource usage and reconfiguration time. In present PR design flows,

the designer must manually determine the number of PRRs and corresponding

module allocation to them and hence the granularity of reconfiguration.

The vendor tools require fixed regions to be determined before any partial bit-

streams can be generated, and those regions must abide by certain constraints.

These requirements are related to the way data is arranged in the configuration

memory, and must be met for the tools to generate valid partial bitstreams. Since

the tools will generate these partial bitstreams for a given netlist allocated to a

specific region, it is also the designer’s responsibility to determine that allocation.

Each region-module combination results in a new partial bitstream. As discussed

in Chapter 3, there have been some unofficial flows proposed that allow a single

bitstream to be modified to allow relocation. However, this is much more difficult

52
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on new architectures with heterogenous resources, complex clock routing, and un-

released bitstream formats, and is also not supported by the vendor tools. The

communication interfaces between PRRs and between PRRs and the static region

are also fixed, and so, every module assigned to a specific PRR should follow the

corresponding interface standard.

Partitioning automatically, with consideration for these factors, can result in more

efficient implementations. Depending on the target application, the key metrics

for a design’s efficiency are resource utilisation and reconfiguration time. We have

already discussed how spatial multiplexing in a static design results in increased

area but a short reconfiguration time of just a few clock cycles. In a PR design,

reconfiguration takes time since a partial bitstream must be applied to the con-

figuration memory. Smaller regions can be reconfigured more quickly than larger

regions, since fewer frames make up the bitstream. However, they can adversely

impact area efficiency. Larger regions allow a design to use fewer resources, but

take longer to reconfigure, and must be configured more often (since any module

that is to be reconfigured affects the whole region). These are the two factors that

we take into account in optimising the partitioning step.

In this chapter, we present algorithms to automatically determine the optimal re-

gion allocation scheme for a given adaptive application. Based on a set of valid

system configurations, the method proposes the best arrangement of reconfigurable

regions and how modules should be assigned to them. For adaptive systems, recon-

figuration occurs on an as-needed basis, and is at the functional, rather than task,

level. This means we cannot predict the order and frequency of reconfiguration,

so must optimise globally to reduce reconfiguration time and minimise area. This

is somewhat different to existing work that explores partitioning in the context of

time multiplexed execution a fixed task graph.

The work presented in this chapter has also been discussed in:

• K. Vipin and S. A. Fahmy, Efficient Region Allocation for Adaptive Par-

tial Reconfiguration, in Proceedings of the International Conference on Field

Programmable Technology (FPT), New Delhi, 2011 [95].



Chapter 4 Partitioning for Partial Reconfiguration 54

• K. Vipin and S. A. Fahmy, Automated Partitioning for Partial Reconfig-

uration Design of Adaptive Systems, in Proceedings of the Reconfigurable

Architecture Workshop (RAW), Boston, USA, May 2013, pp. 172-181 [96].

4.2 Related Work

Much of the work on automated partitioning tries to schedule a graph of depen-

dent tasks onto a fixed number of regions, minimising runtime. They assume that

multiple FPGA regions are used similar to a multi-processor system with each re-

gion processing an independent task. The work in [97] describes a reconfigurable

processor system with two reconfigurable regions for execution speed up. The

speed up is achieved by overlapping the task execution in one region with the

reconfiguration of the other region. The task graph is partitioned in such a way

that reconfiguration and execution can be carried out concurrently without mutual

dependency. Similar work is presented in [98], in which a bitstream pre-fetching

schedule is generated based on control flow graphs, hence reducing the recon-

figuration time. For general adaptive systems, we do not have prior knowledge

of the sequence of configurations, so such methods cannot be applied. Instead,

we know what possible combinations of modules are required, and perhaps what

configuration transitions are possible, and must make decisions based on these.

In [99], the authors present a method for minimising reconfiguration latency based

on analysing communication graphs. The algorithm tries to group modules which

require simultaneous reconfiguration in the same reconfigurable region. However,

the number of reconfigurable regions must be determined by the designer. In [100],

the authors assume the number of reconfigurable regions is fixed and resources are

considered to be homogeneous. The number and size of the regions need to be

determined by the designer. Later, simulated annealing is used to assign hardware

modules to the regions by minimising the reconfiguration time. The number of

modules required to execute a task is assumed to be equal to the number of regions

and if any region is unoccupied, an empty module is assigned to it. Modern
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FPGAs have heterogeneous architecture with distributed DSP and BlockRAMs,

which defeats the homogeneous resource assumption.

The work in [101] explores partitioning and floorplanning in more detail. The

authors describe a simulated annealing based algorithm for determining the allo-

cation of modules to regions based on minimisation of area requirement variance

at different time instances. This work considers the latest FPGA architectures as

well as PR requirements. However, it also makes use of a fixed task graphs for the

optimisation. Furthmore, the impact on reconfiguration time is not accounted for

in their method.

Most existing work we have found does not perform partitioning in a manner

that considers the runtime aspects of PR and does not consider the latest FPGA

architectures. They generally assume a scheduled graph as the input where each

task independently executes in a region. For adaptive systems, we cannot rely on

a fixed sequence of configuration transitions, we care about reconfiguration time,

and must also consider inter-region communication since modules work together

to implement a complete application.

4.3 Contributions

In this section we introduce algorithms which overcome the need for manual par-

titioning, considering the detailed heterogeneous architecture of modern FPGAs,

but abstracted from the designer. We consider adaptive applications where re-

configuration occurs at the module level, and the sequence of configurations is

unknown up front. We focus on optimising reconfiguration time and resource

usage. The main contributions are:

1. A detailed analysis and presentation of factors that affect the efficiency of

partitioning for PR designs.

2. An analytical method to find the optimal partitioning for small designs.
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Figure 4.1: Example PR design with 3 modules.

3. A heuristic approach for automated partitioning for large designs.

4.4 Background and State of the Art

First it is important to define the terms we use in our discussions. A partially

reconfigurable region (PRR) or simply a region is an area on the FPGA fabric

that is demarcated for reconfigured at runtime. A region may include one or more

types of FPGA primitives such as configurable logic blocks (CLBs), DSP slices

and Block RAMs (BRAM). A module is an atomic processing unit in the system

which can implement a hardware function, such as an edge detector in an image

processing pipeline. A module may have one or more modes. In this discussion,

modes are mutually exclusive implementations of the module with the same set of

inputs and outputs. For example a radio modulator may have a mode for QPSK

modulation and another mode for 16QAM. Different modes represent alternative

hardware that must be swapped at runtime.

A configuration is a set of possible co-existent modes. Practically, since not all

mode combinations will be valid, we can significantly improve the partitioning

decision by only considering valid configurations. If we were to consider all possible

combinations, the number of scenarios would grow exponentially with the number

of modes and modules: with 4 modules, each with 3 modes, we would need 34 = 81

possible combinations. Knowing that only a subset of these combinations is valid

means that our solution is optimised for those global configurations that may arise,

rather than configurations that never will.

The Xilinx PR tool chain follows a hierarchical module based design approach [102].

Fig. 4.1 shows an example PR design, divided into static logic (grey) and reconfig-

urable regions (red). The functionality of the static logic does not change during
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system operation—the static region is never reconfigured. There can be one or

more PRRs. In Fig. 4.1, S represents the static logic and there are three reconfig-

urable modules. A1, A2, and A3 are different modes of reconfigurable module A.

Reconfigurable modules must be implemented in PRRs, and a typical approach

is to allocate each module (and hence its modes) to a distinct region, thereby

allowing independent configuration of the modules. To do this, the designer must

allocate regions with sufficient resources to implement all modes of the module as-

signed to that region. This requires FPGA architecture knowledge and the regions

must also be manually floorplanned.

For the example design given in Fig. 4.1, S → A1 → B1 → C1 could be a possible

configuration. Each configuration contains the static logic and one of the possible

modes for each reconfigurable module. It is also possible that some configurations

do not contain any modes corresponding to one or more reconfigurable modules.

In the present PR tool flow, configurations do not play any role in synthesis since

the reconfigurable modules and the assignment of regions, are performed manually.

The designer prepares netlists only for valid combinations of module modes in each

region. Ideally, this process should be automated from a higher level description

of the valid configuration set.

Before discussing how to optimise partitioning and allocation, we should under-

stand the costs we are trying to minimise. The size of a partial bitstream is

proportional to the size of the region, and hence determines the reconfiguration

time. Whenever a module is reconfigured, the entire region to which it is assigned

must be reconfigured. Hence, while combining modules into fewer regions can

allow the tools to optimize resource usage, it is clear that reconfiguration time

can increase dramatically. Furthermore, having more modules in a region means

that region is likely to be configured more often. This work seeks to determine an

allocation that results in as small an area requirement as possible, and as short an

average reconfiguration time as possible.
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4.5 Problem Formulation

4.5.1 Fundamentals

We formulate an analytical model that generates efficient PR allocations without

detailed inputs from the designer. Given an application description our method

defines the optimal number and size of PRRs and the assignment of modules to

those regions. This information can then be passed to the PR implementation

tools to generate the final partial bitstreams.

The easiest and the simplest way to partition for PR is to divide the whole FPGA

fabric into two: one static region and one PR region (PRR). All the static logic

in the design is implemented in the static region, while reconfigurable modules

are implemented in the PRR. This approach has two main benefits. Firstly, the

designer only needs to allocate a single region, large enough to hold the most

resource intensive configuration. Secondly, the implementation tools can optimise

resource usage and timing across all modules resulting in the best possible timing

performance since this method allows logic optimisation across module boundaries.

However, due to several drawbacks this method is not ideal. Firstly, whenever a

module in the region requires reconfiguration, the whole region has to be recon-

figured since partial bitstreams are generated on a region basis. Secondly, since

the whole region must be reconfigured even if a small module is being changed,

the reconfiguration time is increased, in some cases significantly. Finally, designs

with many possible combinations of modes will require a large bitstream for each

possible configuration, resulting in significant storage being required to store bit-

streams. This is again because the partial bitstreams are generated per region

and the size of the bitstreams is proporational to the size of the region. Thus

simply allocating all reconfigurable modules to a single region is not suitable for

systems that require minimised reconfiguration time or have limited bitstream

storage capacity.
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Reconfiguration time can in some cases be the key requirement for an applica-

tion. Take for example a cognitive radio system that is reusing spectrum. If a

primary user appears, the radio must immediately cease sending and search for

empty spectrum. Similarly, a driver assistance system should adjust between dif-

ferent scene processing modes in as short a time as possible. Video applications

may require reconfiguration to take place in the inter-frame interval. Hence, it

is important to consider both worst-case and average reconfiguration times, as

determined application constraints.

Generally, a one-region-per-module approach will offer the lowest worst-case re-

configuration times, since a region requires reconfiguration when its sole module

needs to, and the size of the region is only as large as the largest mode of that sin-

gle module. However, a one-region-per-module approach is the least area-efficient

approach for region allocation since the total resource requirement is the sum of

the requirements of the largest mode of each module. The opportunity for logic

optimisation is also reduced since optimisation across region boundaries is not

possible.

System configurations play an important role in the following discussion. Config-

urations greatly reduce the search space, as we only need to consider allowable

mode combinations to arrive at an optimal allocation. By way of example, let us

represent configurations using an adjacency matrix. Each dimension represents

a module, with its corresponding modes. Each position in the matrix indicates

whether that combination of modes exists in any valid configuration. This is easy

to see for two modules. Consider module A, with modes A1 · · ·An and another

module B with modes B1 · · ·Bm. The adjacency matrix AA,B is an n×m matrix,

as shown.


B1 B2

A1 1 0

A2 0 1

A3 1 1


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Figure 4.2: When assigning modules to separate regions, if some configura-
tions do not exist, combining modules into fewer region could save area.

This matrix indicates that a configuration exists with module modes A1 and B1

but A1 and B2 never coexist. Similarly A2 and B2 coexist but A2 and B1 do

not. For each element in the adjacency matrix, if the sum of the corresponding

row and column is zero, it means that for each mode of the first module, there

is a corresponding mode of the second module. In this case, the two modules

should be allocated to the same region, since they can be optimised together and

always reconfigure together, meaning there is no additional overhead in terms of

configuration time or storage of bitstreams.

When the relationship is more complex, the decision is not as straightforward and

depends on the cost of combining the modules into fewer PR regions. Consider

two modules, each with a small and a large mode, as shown in Fig. 4.2. If they are

allocated to separate regions, the regions must each be large enough for the largest

mode of the corresponding modules. However if we know that the largest modes

for both are never required together, then if they are combined in a single region,

that region only needs to be large enough for the largest overall configuration.

Unfortunately, beyond two modules, the adjacency matrix becomes multi-dimensional

and hard to interpret, hence a mathematical formulation of the above problem is

more appropriate, allowing multiple modules to be considered simultaneously, and

a globally optimal solution found.
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4.5.2 Mathematical Formulation

To solve this problem analytically, we represent it mathematically using an objec-

tive function with a number of constraints. Based on the previous analysis, the

problem can be described as follows:

1. Minimise average reconfiguration time,

2. minimise total resource requirements.

Subject to the conditions:

1. The design fitting in the given device,

2. all modules in the design being implemented,

3. all required configurations being implemented,

4. each module being implemented only once,

5. the number of PR regions begin greater than or equal to 1 and less than or

equal to the total number of reconfigurable modules.

We assign the variables used in the formulation as shown in Table 4.1.

The maximum number of resource type i for module u is given by the maximum

usage of i among the different modes of u:

RuiMAX = max
m

(Rumi), (4.1)

Since each module is implemented only once, the sum of allocation decision vari-

ables should be 1: ∑
q

duq = 1; ∀u (4.2)

If multiple modules are merged into a single region, the area required for resource

type i for each configuration c is determined as follows. The area required for

each mode of module u is taken into account only if the mode exists in the current

configuration c. The area required for each module is summed over all modules
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Notation Description

N Total number of reconfigurable modules

Fi Total amount of resource type i in the FPGA (types can be Slice,
BRAM, DSP)

Rs Reconfiguration (bitstream) throughput

C Set of Configurations

duq Decision variable – 1 if module u is present in reconfigurable region
q otherwise 0

dumc Decision variable – 1 if module u is present in mode m in configu-
ration c otherwise 0

RuiMAX Maximum number of resource type i used by module u

Rumi Number of resource type i used by module u in mode m

Rdi Total requirement of resource type i in the partition scheme

Rqic Number of resource type i used in region q in configuration c

Rqi Maximum number of resource type i consumed by region q

Aq Area of region q in normalized units

Wi Area weighing factor for resource type i

Wfi Number of frames in resource type i

tq Reconfiguration time for region q

tc Reconfiguration time for configuration c

tw Worst case reconfiguration time

ta Average reconfiguration time

Table 4.1: Notation used in formulation.

present in region q. The partition method can vary from using a single region to

using separate region for each module.

Rqic =
∑
u

∑
m

Rumi ∗ dumc ∗ duq; c = 1, 2, ...C (4.3)

For region q, from the set of resource requirements for different configurations,

the maximum resource requirement for type i is determined, which is the required
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result.

Rqi = max
c

(Rqic) (4.4)

The total number of resources of type i required for the complete design is the

sum of resource type i required by all regions

Rdi =
∑
q

Rqi (4.5)

In order for the design to fit into a particular FPGA, for each resource type i, the

total resources required should be less than or equal to resource type i present in

the FPGA.

Fi −Rdi ≥ 0 (4.6)

The total area cost of region q is given by

Aq =
∑
i

Wi ∗Rqi (4.7)

where Wi is the weighing factor for resource type i, calculated as the ratio of total

resources to resources of type i.

Now consider reconfiguration time. Reconfiguration time for region q can be de-

termined by dividing the area of q by the reconfiguration throughput.

tq =
∑
i

Wfi ∗Rqi/Rs, (4.8)

where Wfi is the weighing factor determined by the number of reconfigurable

frames required for resource type i. This factor depends on the target FPGA

family as discussed in Section 3.1.2 and Table 3.1. When modules are merged,

reconfiguration of any of the modules in the region leads to reconfiguration of the

entire region. The frequency of reconfiguration depends on the application and

the system operating environment. Total configuration time for the system when

it changes from configuration ci to configuration cj is calculated as the sum of the
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configuration times for regions, whose modules change their modes.

tc =
∑
q

tq ∗ dcq, (4.9)

where dcq = 1 if, for any duq = 1, dumci 6= dumcj else 0. Average reconfiguration

time is the average of all possible configuration times.

ta = t̄c (4.10)

Worst case reconfiguration time (tw) for a partition scheme is calculated as the

maximum reconfiguration time among all possible configuration transitions.

tw = max(tc) (4.11)

Depending on the requirement, the objective function can be selected as the total

area or reconfiguration time. In order to improve the overall system performance,

average reconfiguration time is selected as the minimisation objective in this case.

For applications where a strict reconfiguration time limit must be met, worst case

reconfiguration time can be used instead.

4.5.3 Integer Linear Programming

The exact solution for this problem can be found using Integer Linear Program-

ming (ILP). Although ILP is known to be NP-Complete, this formulation allows

us to find an optimal solution for smaller systems containing 10 or fewer reconfig-

urable modules which is common in practical use. In order to solve the problem

using an ILP solver, it is represented in a specific format having an objective

function and a number of constraints. From the above problem formulation, ILP

equations can be represented as

Minimise(
∑
q

Aq) (4.12)
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or

Minimise(ta). (4.13)

subject to

∑
q

duq = 1, (4.14a)

Aq =
∑
i

Wi ∗Rqi, (4.14b)

Rdi =
∑
q

Rqi, (4.14c)

Fi −Rdi ≥ 0, (4.14d)

tc =
∑
q

tq ∗ dcq, (4.14e)

ta = t̄c. (4.14f)

These equations can be solved by freely available ILP solvers such as LPSolve [103].

The solver is directed to sequentially increment the number of PRRs from 1 to

the number of reconfigurable modules. After each iteration, the best arrangement

for the present number of regions is compared with the previous best result and

the solution is updated. The solver can be also directed to find the pareto-optimal

points by including the second objective function (the one not used by the ILP

solver) in the comparison. The values ofWi, Wfi as well as the resource availability,

are FPGA-dependent. These are stored in a file and the solver is pointed to a

particular FPGA in order to find an optimal partitioning for that FPGA, or to

determine the most suitable FPGA device for the application.

4.6 Case Study

For a realistic evaluation, we apply our region allocation approach to an example

design implemented on a Virtex-5 FX70T FPGA. This device contains 11200 Slices

(5600 CLBs), 128 DSP Slices and 296 BlockRAMs, The design is a wireless video
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Module Mode Slices BRAM DSP

Matched Filt (F)
1. Filter1 818 0 28

2. Filter2 500 0 34

Recovery (R)

1. Fine 318 1 13

2. Coarse1 195 1 5

3. Coarse2 123 0 8

4. None 0 0 0

Demodulator (M)
1. BPSK 50 0 2

2. QPSK 97 0 4

Decoder (D)

1. Viterbi 630 2 0

2. Turbo 748 15 4

3. DPC 234 2 0

Decoder (V)

1. MPEG4 4700 40 65

2. MPEG2 4558 16 32

3. JPEG 2780 6 9

Table 4.2: Resource utilisation for reconfigurable modules.

receiver chain using in-house and vendor provided IP. The system has one static

region and five reconfigurable modules, and can operate in various modes, and

adapt to channel conditions and user requirements at runtime. Modules commu-

nicate with each other using a simple streaming bus interface, which is registered

to ensure timing is not affected by partitioning. The resource utilisation for each

reconfigurable module and mode is shown in Table 4.2.

The different configurations used by the system are the following:

S → F1 → R3 →M1 → D1 → V1

S → F1 → R3 →M1 → D1 → V2

S → F1 → R3 →M1 → D1 → V3

S → F2 → R1 →M2 → D3 → V1

S → F2 → R2 →M1 → D1 → V1

S → F2 → R2 →M1 → D1 → V2
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Figure 4.3: Resource requirements and configuration time for different parti-
tioning results.

S → F2 → R2 →M1 → D1 → V3

S → F1 → R2 →M1 → D2 → V2

Reconfiguration throughput is taken as 234 MB/s [104].

We first apply our ILP based partitioning algorithm to the design. A plot compar-

ing the average reconfiguration time against total resource requirements is shown

in Fig. 4.3, which represents the solution space explored by the algorithm. The

infeasible region of the plot represents solutions which can not be implemented on

the target FPGA due to the lack of resources. Implementing a static design, using

multiplexers to select between modes, requires 15800 Slices, 83 BRAMs, and 204

DSP slices, which exceeds the capacity of the target device. Using a one-region-

per-module scheme, this design will not fit into the target FPGA device, since that

scheme requires 18 DSP tiles while the device has only 16. The partitioning scheme

in which all the modules are implemented in a single region (labelled {FRMDV})
gives the lowest resource utilisation of 473 tiles, but the average reconfiguration

time for this scheme is considerably higher than other results, at 4.32 ms. Using

the proposed partitioning method, we can find schemes that fit the design into

the FX70T device with minimum reconfiguration time. The analytical method
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enables us to choose one of the 6 Pareto optimal partitioning schemes depending

on application requirements.

The configuration in which the decoder (V) is implemented in a single region and

all other modules are implemented together in another region, labelled {V},{FRMD}
in the plot, gives the lowest average reconfiguration time. This scheme uses 504

normalised tiles and has a average reconfiguration time of 2.52 ms. The scheme

in which the filter (F) and recovery (R) modules are combined in a single region

and other modules are implemented together (labelled {FR},{MDV} in the plot)

lies closest to the origin. This scheme uses 478 normalised tiles and the average

reconfiguration time is 3.54 ms and hence gives 13.5% area improvement compared

to one-module-per-region scheme. Worst case reconfiguration time for the optimal

scheme is 4.36 ms, while for the one-region-per-module, scheme, it is 4.69 ms.

The bitstream storage requirements for these schemes was also calculated. The

solution {FR},{MDV} requires 53 Mbits storage while implementing all modules

in a single region requires 81 Mbits to store bitstreams. These results depend

significantly on the configurations defined by the application. The upper bound

area consumption will be that of using separate regions for each module and the

lower bound is a single-region scheme.

One limitation of the proposed algorithm is its execution time as the design space

becomes larger. For the example case study, the solver was able to determine the

optimal solution in about 30 seconds. But as the number of modules increases,

the number of equations to be solved, and hence the solution space, also increases

exponentially. For example, a synthetic design with 10 modules, each with 10

modes, takes about 30 minutes to determine the final partition. To limit explo-

ration space, we have assumed that every mode belonging to same module is always

implemented in the same region. This assumption may restrict the solver from

finding a more optimal solution as resource requirement variance between modes

belonging to different modules may be less than the variance among the modes of

same module. In the next section we discuss an improved heuristic algorithm that

removes this constraint.
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4.7 An Improved Heuristic Partitioning Algo-

rithm

In this section, we introduce an improved partitioning algorithm that is more

flexible, and has improved runtime. Heuristics allow larger problems to be solved,

and by separating the logical association of modes of the same module, more

efficient allocations can be generated.

4.7.1 Partitioning Algorithm

The proposed algorithm tries to determine the best partitioning scheme for a

given PR system by minimising reconfiguration time. It can be also be modified

to determine the partitioning resulting in the least resource consumption. The

algorithm can also suggest the smallest FPGA suitable to implement the given

design for non-time-critical applications.

The minimum possible area required for a PR system, excluding the static logic,

is the area of the largest configuration (when all the modes are implemented in a

single reconfigurable region). Hence, the we first check implementation feasibility

by comparing this area with the resource availability of the selected FPGA. If the

resource availability is insufficient, the device choice is rejected and another device

must be chosen. If a solution is feasible, a connectivity matrix is generated with

each row representing a configuration and each column representing a reconfig-

urable module. This matrix is an M × N matrix, where each row represents a

configuration and each column represents a mode. Note that we remove the mod-

ule distinction in this formulation since that is only of relevance to the designer

and has no bearing on how specific module modes will be allocated to regions in

this enhanced approach. An element (i, j) in the matrix with value 1 represents

mode j being present in configuration i. For the example design in Section-4.4, if

the system supports the following 5 configurations:

S → A3 → B2 → C3
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S → A1 → B1 → C1

S → A3 → B2 → C1

S → A1 → B2 → C2

S → A2 → B2 → C3

then their connectivity matrix will be



A1 A2 A3 B1 B2 C1 C2 C3

Conf1 0 0 1 0 1 0 0 1

Conf2 1 0 0 1 0 1 0 0

Conf3 0 0 1 0 1 1 0 0

Conf4 1 0 0 0 1 0 1 0

Conf5 0 1 0 0 1 0 0 1


This matrix is used to determine weights for use in the optimisation. The node weight

of a mode is the number of times that mode appears in the possible configurations

and is computing by summing columns in the matrix. For mode A1 in the exam-

ple, the node weight is 2 and for B2, it is 4. The edge weight, Wij between any

two modes i and j is the number of times these modes occur concurrently in the

possible configurations. For modes A1,B1, the edge weight is 1 and for B2,C3, it

is 2.

Once all the weights are calculated, a modified hierarchical clustering algorithm [105]

with an agglomerative strategy is used for partitioning. The metric used for clus-

tering is the edge weight, Wij. The agglomerative strategy is a bottom-up cluster-

ing method, which iterates by adding new edges between the nodes in a network.

Here, the nodes are the different modes present in the system, and all nodes are

initially disconnected. The algorithm first checks for complete sub-graphs in the

network. A complete sub-graph is a sub-graph, where every pair of distinct vertices

is connected by a unique edge. Since initially none of the nodes are connected,

each node can be considered as a sub-graph with number of edges, k = 0.

The algorithm iterates and in each iteration, it links the two nodes with the highest

edge weight. The rationale for this is that a larger edge weight indicates that two
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modes occur concurrently more frequently for the given configurations, and hence

these modes should be grouped in the same region. Once two nodes are connected,

the algorithm checks for new complete sub-graphs. This is shown in Fig. 4.4(a).

The edge value between A3 and B2 is 2, which is the highest, so A3 and B2 are

linked. A search for new complete sub-graphs finds {A3,B2} with number of edges,

k = 1.

The sub-graphs found in each iteration are called base partitions. Base partitions

represent the set of mode clusters which can be used to determine the final par-

titioning. The frequency of occurrence of a base partition in the configurations

is represented by a term called the frequency weight. For sub-graphs with k = 0,

frequency weight is equal to the node weight (i.e. how many times that mode

occurs in all configurations) and for sub-graphs with k=1, the frequency weight is

equal to the edge weight. For sub-graphs with a higher number of edges, the fre-

quency weight is the smallest edge weight present in the sub-graph. For example,

in Fig. 4.4(b), the frequency weight of sub-graph {A3,B2,C3} is 1, which is the

edge weight between A3 and C3. The algorithm iterates until all the possible links

are added to the graph. The final sub-graphs detected are the full configurations,

with frequency weight 1. The resulting base partitions for the example design are

listed in Table 4.3.

Once base partitions are generated, a covering algorithm is used to select those

used for partitioning. For this purpose, the base partitions are arranged in a list

A1
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A3

B1

B2

C1

C2

C3

2

1

2

1

4
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2
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B2

C1

C2

C3

2

1

2

1
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1
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2

2 2 2
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Figure 4.4: (a)A sub-graph with k = 1. (b)A sub-graph with k = 3..
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Base Partition Freq. weight

{A2} 1

{C2} 1

{B1} 1

{A1} 2

{C1} 2

{C3} 2

{A3} 2

{B2} 4

{A1, B2} 1

{B2, C1} 1

{A1, C1} 1

{B2, C2} 1

{A2, B2} 1

Base Partition Freq. weight

{A1, C2} 1

{A1, B1} 1

{B1, C1} 1

{A2, C3} 1

{A3, C1} 1

{A3, C3} 1

{B2, C3} 2

{A3, B2} 2

{A3, B2, C3} 1

{A1, B1, C1} 1

{A3, B2, C1} 1

{A1, B2, C2} 1

{A2, B2, C3} 1

Table 4.3: Base partitions for example design their frequency weights.

in ascending order of the number of modes included. As the number of modes in

a region increases, the frequency of reconfiguring that region increases, since mod-

ifying even a single mode in the region requires the complete reconfiguration of

the whole region. Since our objective is to minimise reconfiguration time, regions

are prioritised based on the number of modes. If two base partitions have the

same number of modes, they are arranged in ascending order of frequency weight.

Subsequent steps of the algorithm show that this prioritisation keeps the high fre-

quency base partitions as candidates when the algorithm iterates. Base partitions

with the same frequency weight are arranged in ascending order of their area.

Now base partitions are selected from the list in sequence order and compared

with the connectivity matrix. For each configuration (i.e. for each row in the

connectivity matrix) the corresponding modes present in the selected base partition

are set to zero. For example, the first base partition selected from the list is {A2}.
For the fifth configuration, A2 is active. The corresponding element A2 is set to
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zero and the fifth row of the connectivity matrix becomes

[0 0 0 0 1 0 0 1]

Subsequently, base partitions {C2}, {B1} etc. are used to cover more configu-

rations. Base partitions are selected and compared from the list until all ele-

ments in the matrix become zero. If a base partition does not cover any new

mode, it is not considered as a candidate. The set of base partitions used to

cover all configurations becomes a candidate partition set. In other words, a

candidate partition set is a set of base partitions, whose modes can cover all

the possible configurations. For the example design, the first candidate partition

set is {{A2}, {B1}, {C2}, {A1}, {C1}, {C3}, {A3}, and{B2}}. A closer examination

shows that these are actually all the modes present in the design.

As the next step, the tool finds the compatible set of partitions for each base

partition from the candidate partition set. Two partitions are compatible, if the

modes present in them do not co-occur in any of the configurations. For example

{A1} and {A2} are compatible partitions since they do not co-exist in any of the

possible configurations, while {A1} and {B1} are not compatible, since there is

a configuration S → A1 → B1 → C1. This step is necessary to make sure that

all configuration transitions are possible. If two base partitions required for a

single configuration are allocated to the same region, that configuration cannot be

implemented since at a given instance, only one base partition will be active in a

configurable region.

Region allocation starts by allocating each element of the candidate partition set

to a separate region, since this is equivalent to the static implementation which

requires minimum reconfiguration time. The total resource requirement and re-

configuration time for this partitioning is calculated. To find a new solution, two

compatible base partitions are assigned to the same region. The cost function for

assigning two base partitions to a single region is calculated in terms of the total

number of frames being reconfigured considering all the configuration transitions.
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When two base partitions with area P1 and P2 (in terms of frames) are assigned

to the same region r, the area of the region is calculated as,

Pr = max(P1, P2) (4.15)

The area of the region will be the area of the largest base partition assigned to it.

To find the exact number of frames present in the region, the region is considered

in terms of CLB, DSP, and BlockRAM tiles. Depending upon the number of

resources present in each tile, the number of tiles required for each resource type

for region r is calculated for a Virtex-5 FPGA as.

Rrclb = dmax(P1clb , P2clb)/20e, (4.16)

where Rrclb is the total number of CLB tiles required.

Rrdsp = dmax(P1dsp , P2dsp)/8e, (4.17)

where Rrdsp is the total number of DSP tiles required.

Rrbr = dmax(P1br , P2br)/4e, (4.18)

where Rrbr is the total number of BlockRAM tiles required.

If the total resource requirement of the partition for each resource type is less

than or equal to the resources available in the FPGA, the reconfiguration time is

calculated.

The total number of frames required for the new region is calculated as

Pr =
∑
t

Wt ∗Rrt (4.19)
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Figure 4.5: Flow chart for the proposed partitioning algorithm.

where t is the tile type, t ε (CLBs, DSP blocks, BlockRAMs),

Wclb = 36, Wdsp = 28 and Wbr = 30 for Virtex-5 family FPGAs

Wclb = 36, Wdsp = 28 and Wbr = 28 for Virtex-6 and 7-Series family FPGAs

System performance can be measured in terms of total reconfiguration time and

worst-case reconfiguration time. Total reconfiguration time gives a measure of

overall system performance, and is a useful proxy when we do not know the specific

configuration transitions up front, as is the case for adaptive systems. Total re-

configuration time is measured as the sum of all possible configuration transitions,

i.e. by considering transitions from all configurations to all other configurations.

If some statistical information about the probabilities of different configurations

occurring is known, this could be factored into the measure.

In some applications, such as real time systems and safety critical systems, the

system cannot tolerate reconfiguration time beyond a certain limit. Here it is

important that no configuration transitions take longer than this stipulated time.

Worst-case reconfiguration time is a useful measure in this situation. It is the
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largest configuration transition time among all the possible configuration transi-

tions.

Mathematically, the total reconfiguration time is given by

ttotal =
c−1∑
i=1

c∑
j=i+1

tconi,j j > i (4.20)

where, c is the total number of configurations, and tconi,j is the time required to

change the system configuration from i to j, and is calculated as

tconi,j =
N∑
r=1

di,j × tconr (4.21)

Where di,j is a decision variable which is equal to 1 if region r contains different

base partitions in configuration i and configuration j. tconr is the time to configure

region r and N is the total number of regions.

The configuration time for a region is proportional to the area of the region.

tconr ∝ Pr (4.22)

Hence total reconfiguration time in terms of frames is:

ttotal =
c−1∑
i=1

c∑
j=i+1

N∑
r=1

di,j ×
∑
t

Wt ∗Rrt (4.23)

t is the tile type, t ε (CLBs, DSP blocks, BlockRAMs),

The worst case reconfiguration time is calculated as

tworst = max(tconi,j) (4.24)

If the total reconfiguration time for the partition scheme is less than the present

lowest time, the scheme is stored as the present best partition scheme. Once

the total number of frames is calculated, base partitions assigned to the region
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are removed from the list and the new region is added to the list as a new base

partition and compatible partitions are recalculated.

The algorithm iterates by assigning two new compatible partitions to a region. If

all possible compatible base partition assignments are done, the algorithm restarts

from the initial candidate partition set, and assigns two compatible base partitions

to the same region, which are distinct from those used to begin the previous it-

erations. Once all combinations of compatible base partitions are considered for

initial assignment, a new set of base partitions is selected from the list to gener-

ate a new candidate partition set. For this purpose, the top most base partition

is removed from the list, and the covering algorithm is re-applied. Due to the

arrangement of the base partitions, the one with the lowest frequency weight is re-

moved from the list. For the example design, after the first set of iterations, {A2}
is removed from the list and {A2, B2} is added to the new candidate partition set.

The algorithm iterates until no more candidate partition sets are possible. When

the algorithm terminates, it selects the scheme with the lowest reconfiguration time

as the final partitioning. Considering the valid configuration information in the

partitioning step makes it a tractable problem, whereas if all possible combinations

of modes were considered, the problem would become NP-hard and we would only

be able to find sub-optimal solutions. One key difference in our new approach is

that we focus on making use of all available resources in the target FPGA. Rather

than only minimising resource usage, likely at a cost of increasing reconfiguration

time, this approach will optimise reconfiguration time, using all the resources

available on the FPGA specified, and hence, may implement multiple modes of

the same module at the same time.

4.7.2 Special Conditions

One scenario we have worked to include in this formulation is where the system

does not consist of a number of distinct design modules that have different modes.
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For example consider the design example used in [101], that has only two config-

urations.

1. CAN controller (C) → FIR filter(F)

2. Ethernet controller (E) → Floating point unit (P) → CRC (R)

Here, there are no clear mode relations between the configurations. In our algo-

rithm this is dealt with by specifying each reconfigurable module as having just

a single mode. While specifying the configurations, the modules which are not

present in a configuration are marked as having mode 0. For this example, the

configurations are specified in our algorithm as

1. C1 → F1 → E0 → P0 → R0

2. E1 → P1 → R1 → C0 → F0

The algorithm treats mode 0 as the absence of the corresponding module, and no

column is allocated for zero modes in the connectivity matrix. This allows us to

mix multi-mode modules and one-off modules.

4.8 Case Study

Now we apply our heuristic approach to the same partitioning problem for the wire-

less receiver described in Section 4.6. The proposed algorithm finds a solution that

requires 6600 Slices 60 BRAMs and 140 DSP slices, with a total reconfiguration

time of 235266 frames, 4% less than the one module per region implementation.

The low percentage improvement is due to the large size of the decoder module

modes compared to other modules and also since, in the final solution, all decoder

modes are assigned to the same region. The final scheme determined by the al-

gorithm is as shown in Table 4.4. The resource requirements for each scheme are

shown in Table 4.5.
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Region Base Partitions

PRR1 M2, {M1, D2}
PRR2 D3, R2, R3

PRR3 D1, R1

PRR4 F1, F2

PRR5 V1, V2, V3

Table 4.4: Partitions determined by algorithm.

The proposed algorithm was implemented using the Python programming lan-

guage [106].

Now consider the system configurations are changed to:

S → F1 → R3 →M1 → D1 → V1

S → F1 → R2 →M1 → D1 → V3

S → F2 → R3 →M1 → D1 → V3

S → F1 → R1 →M2 → D3 → V1

S → F2 → R1 →M2 → D3 → V2

The solution found by the proposed algorithm is given in Table 4.6. This scheme

requires 6500 Slices, 60 BRAMs, and 144 DSP slices, with a total reconfiguration

time of 92120 frames. This is 6% less that the one module per region scheme.

From the explored schemes, the scheme with the smallest reconfiguration time

that can fit in the FPGA is selected as the final solution. These results show

that for optimal performance, partitioning needs to be a function of the system

configurations and resource availability. It is also clear that large modules can

dominate, making the results close to a one-region-per-module scheme.

Scheme Slices BRAMs DSPs Total Recon. time

Static 15800 83 204 0

Modular 6700 60 144 244872

Proposed 6600 60 144 235266

Table 4.5: Properties for different partitioning schemes.
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Region Base Partitions

Static M1, D2

PRR1 D1, R1

PRR2 R2, R3,M2, D3

PRR3 F1, F2

PRR4 V1, V2, V3

Table 4.6: Partitions determined by algorithm for modified configurations.

For a more thorough investigation of the proposed algorithm, we require more

PR designs. Unfortunately, there are very few such designs in the literature, and

many of those available are very simple. Spending significant effort on assembling

suitable designs from IP blocks would also be troublesome. Hence, we use synthetic

designs for a more thorough evaluation. We generated 1000 synthetic designs,

with an equal number of logic-intensive, memory-intensive, DSP-intensive and

DSP-and-memory-intensive modules. Each design is also augmented with a static

region requiring 90 CLBs and 8 BRAMs, based on our custom ICAP controller

and associated logic [107]. Designs are generated containing 2–6 modules, each

with a number of modes varying from 2 to 4.Each mode can consumes 25 to 4000

CLBs, and the number of other resources is chosen from a range determined by

the number of CLBs and the type of the circuit (logic-intensive, memory-intensive

etc.). Configurations are randomly generated, until every mode present in the

design is utilised at least once. This results in a wide range of design types, that

we expect to give us a better idea of how well the proposed algorithm performs.

For each design, the minimum resources required for implementation are deter-

mined by considering a design using a single PR region. This is used to determine

the smallest FPGA that can accommodate the design. The FPGAs used are from

the Xilinx Virtex-5 family [108]. If at the end of an iteration of the algorithm,

no partitioning scheme other than a single region is feasible, we select the next

largest FPGA and the design is partitioned again. The program takes between a

few seconds and one minute to determine the best solution for a design depending
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Figure 4.6: Total reconfiguration time for proposed method vs one module per
region implementation and single PR region sorted according to target FPGA

size.
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Figure 4.7: Worst case reconfiguration time for proposed method vs one mod-
ule per region implementation and single PR region sorted sorted according to

target FPGA size.

upon its size and the number of configurations (running on an Intel Core2 Duo

3.1GHz processing with 8GB of RAM).

201 of the 1000 designs could not be alternatively arranged on the smallest FPGA,

so they were re-iterated using larger FPGAs. In 13 cases, the proposed algorithm

was able to fit the design in a smaller FPGA than is required for the one module

per region scheme.
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Figure 4.8: Percentage improvement for total reconfiguration time found by
the proposed algorithm compared to (a) one module per region and (b) single
region schemes and for worst reconfiguration time compared to (c) one module

per region and (d) single region schemes.

A comparison of total reconfiguration time for the one-module-per-region scheme,

a single-region scheme, and the scheme determined by the proposed algorithm

is shown in Fig. 4.6. The results have been sorted based on the target FPGA.

The total reconfiguration time for the single-region scheme is high since for each

reconfiguration, the complete PR region needs to be reconfigured. In most cases,

the proposed algorithm finds a better solution than the one-module-per-region

scheme.

A comparison for worst-case reconfiguration time is shown in Fig. 4.7. In al-

most all cases, the proposed algorithm has a lower worst-case reconfiguration time

compared to the one-module-per-region scheme. The plot shows that in several
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scenarios, the worst-case reconfiguration time for a single-region scheme is lower

than the one-module-per-region scheme and the solution of the proposed algo-

rithm. This occurs because the single-region implementation scheme has the min-

imum resource requirement when all modes are implemented in PR regions (i.e.

no modes are moved to the static region). For this scheme, the worst-case recon-

figuration time is independent of configuration transitions, since each transition

requires the entire region to be reconfigured and hence it is the same for all tran-

sitions. Meanwhile the worst-case for the other schemes will typically be where

all modules switch mode, and hence, the increased sum area of PR regions causes

this to be longer. But the impact of this scheme on overall system performance is

evident from Fig. 4.6, since for all configuration transitions the whole region needs

to be reconfigured.

Profiles of the percentage improvement of the proposed algorithm compared to

the one-module-per-region and single-region schemes are shown in Fig. 4.8. The

proposed scheme performs better than the one-module-per-region scheme in terms

of total reconfiguration time in 73% of cases and performs better than the single-

region scheme in all cases.

In terms of worst-case reconfiguration time, the proposed algorithm finds a bet-

ter solution than the one-module-per-region scheme in 70% of cases. For 3 de-

signs, the output of the algorithm performs worse. Compared to the single-region

scheme, the proposed method improves or matches worst-case reconfiguration time

in 87.5% of cases. In the remaining 12.5% of cases, the total reconfiguration time,

which is what we optimise for, is very high and hence, this is not relevant.

We can see that the proposed algorithm offers tangible improvements over both

traditional partitioning approaches, especially in cases where it determines that

modules can be moved to the static region. At the same time, it is clear that using

general measures of total reconfiguration time and worst-case reconfiguration time

may not tell the whole story. A more detailed analysis would require knowledge of

the specific transition probabilities. By running the system for a period of time,
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we could gain an understanding of which transitions are more likely and weigh

those more in the calculations.

4.9 Summary

Determining the number of partial reconfiguration regions and the allocation of

reconfigurable modules to regions is not always trivial, but this choice can impact

FPGA resource utilisation, reconfiguration time and the storage requirement for

configuration bitstreams. We have introduced a new technique, which can be

incorporated into the existing vendor-supported partial reconfiguration tool flow

to automate the partitioning step. We first presented an analytical formulation

that can determine an optimal mapping of modules to regions. We then presented a

more heuristic approach that treats each module mode independently, can allocate

some to the static region, and optimises for reconfiguration time. We demonstrated

that these approaches improve resource consumption and reduce reconfiguration

time for both real and synthetic adaptive applications. Automating partitioning

is the first step in a flow that allows a high level description to be mapped to a

fully functional PR implementation.
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Floorplanning PR Designs

5.1 Introduction

Floorplanning involves physical partitioning of the FPGA fabric for the optimal

placement of reconfigurable regions (PRRs) in order to improve routability, timing

or density. For standard non-PR based FPGA designs, floorplanning is generally of

less interest and is only used by expert designers to achieve high area optimisation

or timing performance. For static FPGA designs, the present vendor tools are

versatile enough to perform timing driven placement and routing, while fitting the

design within the available resources. Further manual tweaking can help improve

performance to meet particularly stringent time constraints.

Present vendor PR tools do not support automatic floorplanning, and require man-

ual inputs from the designer. To come up with an efficient floorplan, the designer

must have knowledge about the low-level physical architecture of the target FPGA,

as well as the run-time costs associated with PR. Manual floorplanning based on

these factors consumes a large amount of design time and is cumbersome, often

leading to sub-optimal results. This floorplanning requirement has contributed to

making PR less attractive to adaptive system designers, since most FPGA design-

ers never deal with floorplans for static designs. An intelligent arrangement and

allocation of PR regions can result in reduced area and hence allow designs to

85
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fit on smaller devices. It is also important to note that the implementation tools

cannot perform logic optimisation across the PRR boundaries, and hence, their

locations are important in achieving timing closure. We present a technique that

considers the runtime properties of PR to reduce reconfiguration time, by finding

a placement that factors in the lowest level granularity of heterogeneous resources

on modern FPGAs.

The work presented in this chapter has also been discussed in:

• K. Vipin and S. A. Fahmy, Architecture-Aware Reconfiguration-Centric Floor-

planning for Partial Reconfiguration, in Proceedings of International Sym-

posium on Applied Reconfigurable Computing (ARC), Hong Kong, 2012, pp.

13–25 [109].

5.2 Related Work

Although a number of approaches to FPGA floorplanning have been published,

work related to floorplanning for PR is less abundant. Traditionally, FPGA floor-

planning is considered as a fixed-outline floorplanning problem, as introduced

in [110] and further extended in [111]. The authors present a resource-aware

fixed-outline simulated-annealing and constrained floorplanning technique. Their

formulation can be applied to heterogeneous FPGAs but the resulting floorplan

may contain irregular shapes, which are not allowed in current PR flows. An-

other interesting study is presented in [112], which presents an algorithm called

“Less Flexible First (LFF)”. In order to perform placement, the authors define

the flexibility of the placement space as well as the modules to be placed. A cost

function is derived in terms of flexibility and a greedy algorithm is used to place

modules. The generated floorplan has only rectangular shapes, but the approach

only works with older-generation FPGAs and is unsuitable for recent families due

to their heterogeneous resource layout.
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The approach in [113] is based on slicing trees, and can ensure that the floorplan

contains only rectangular shapes. Here, the authors assume that the entire FPGA

fabric is composed of a repeating basic tile, which contains all types of FPGA

resources including Configurable Logic Blocks (CLBs), Block RAMs and DSP

slices. Although this assumption is valid for older-generation FPGAs, such as the

Xilinx Spartan-3, more recent FPGAs such as the Xilinx Virtex-6 family, do not

have such a repeated tile architecture.

Yuh et al. published two methods for performing floorplanning for PR. One

method is based on using a T-tree formulation [114] and the other is based on

a 3D-sub-Transitive Closure Graph (3D-subTCG) [115]. T-trees are tree based

data structures, which represent the spatial and temporal relations among tasks.

Using T-trees, each reconfigurable operation is represented as a 3D-box, with its

width and depth representing the physical dimensions and its height being the ex-

ecution time required for the operation. Here the reconfiguration operations are at

a task level rather than functional level and the authors consider older-generation

Virtex FPGAs, which require columnar reconfiguration.

In [101], the authors present a reconfiguration-aware “floorplacer”. Their algo-

rithm is based on the more recent Virtex-5 FPGA architecture. The algorithm

initially divides a design into reconfiguration regions based on the minimisation of

temporal variance of resource requirements. Then, the floorplacer tries to minimise

area slack using simulated-annealing. In [116], a floorplanning method based on

sequence pairs is presented. In this work, authors have shown how sequence pairs

can be used to represent multiple designs together. An objective function tries

to maximise the common areas between designs and simulated-annealing is used

for optimisation. Although simulated-annealing-based floorplanners have been de-

veloped, for soft modules, which are common in PR designs, the results are not

satisfactory [117].

Since the work in this chapter was completed, a recent paper proposes the use of

mixed-integer linear programming to optimally solve the PR floorplanning prob-

lem [118] . Although this technique can provide improved results, a solution takes
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several hours for reasonably sized problems and the search space increases expo-

nentially with the number of regions. To reduce exploration time, they propose

that the designer provide an initial solution, which can then be refined using

heuristics. This, however, requires manual floorplanning on behalf of the designer

and the final result depends on this initial input.

Most existing work we have found focuses on the static properties of a particular

placement. Hence, the placement is not optimised for the dynamic behaviour of a

partially reconfigurable system. Other work relies on floorplanning for PR-based

region sharing of fixed task-graphs,only optimising for a fixed sequence of configu-

rations. We present an approach that optimises the runtime properties by finding

a placement that results in the lowest possible reconfiguration time, considering

the lowest level granularity of heterogeneous resources on modern FPGAs, for

designs where the adaptation is at a functional level and hence unpredictable.

5.3 Contributions

In this section we propose a novel algorithm, which can help system engineers

adopt PR without the need for manual floorplanning. Our floorplanner can be

integrated with our partitioning methods and the existing FPGA vendor tool

chain. In our method, we consider the runtime overheads associated with PR as

well as the characteristics of target FPGA devices. We are interested in recent

FPGA families such as the Xilinx Virtex-5, Virtex-6 and 7-series FPGAs, which

are highly heterogeneous in nature and have an irregular arrangement of Block

RAM and DSP columns. For PR applications, we are typically concerned with

reducing reconfiguration time and area. Cost functions are used that take into

account several factors such as resource wastage, wirelength and reconfiguration

time. The main contributions are:

1. A detailed analysis and presentation of factors that affect the efficiency of

floorplans for PR designs.
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2. A novel method for floorplanning on modern heterogeneous FPGA architec-

tures, that improves PR design characteristics.

3. A comparison of the proposed floorplanning efficiency with existing ap-

proaches.

5.4 PR Floorplanning Considerations

In order to unburden the designer from manual floorplanning, an automated PR

flow must take care of floorplanning. In this section, we develop a device model

and explore the factors to be considered in designing an efficient floorplanner for

PR. The limitations of several existing methods will be also explained.

Similar to the partitioning problem, it is possible to find an optimal floorplan

for a given set of PRRs and their connectivity using analytical methods. But the

equations required to solve the problem are complicated and require a large number

of variables to account for all the restrictions imposed by the implementation tools

and the architecture details of heterogeneous FPGAs. Different constraints would

be required for each different target device. The solution exploration space also

grows exponentially with the number of regions. Hence we adopt a heuristic

method which considers the architecture of heterogeneous FPGAs as well as the

restrictions imposed by PR implementation tools.

5.4.1 Architecture Considerations

For efficient floorplanning, the tool should be aware of the FPGA architecture and

special requirements arising due to PR. The details of the target Virtex FPGA

architecture have been discussed in Section 3.1.2. To summarise, columns of differ-

ent resource types are distributed horizontally, with the device an integer number

of rows high. One row by one column is a tile of a specific resource type, and

this is the finest granularity that can be reconfigured without extra complexity.
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Partial reconfiguration is performed by modifying the configuration memory por-

tions corresponding to the PR regions. Any modification to a region requires full

reconfiguration of the corresponding region. Reconfigurable regions should be con-

sidered in terms of tiles since configuration must occur on a per tile basis. To use

regions with incomplete tile boundaries, extra circuitry is required to read, mod-

ify, and write configuration information, resulting in increased area and latency.

Reconfigurable regions must always be rectangular in shape. Since each tile is

one device row high, the height of reconfigurable regions is an integer multiple of

device rows. The size of the bitstream, and hence the reconfiguration time of a

region, is directly proportional to the total area of the region, irrespective of how

many resources in the region are actually utilised.

In addition to other restrictions, 7-series FPGAs and hence Zynq SoCs have an

additional restriction of PRRs not dividing the interconnect tiles. In 7-series FP-

GAs, internal switch boxes control routing to two adjacent columns, and these

are interconnect tiles. Columns connected with the same switch boxes should be

within the same PRR. Due to this restriction the first CLB column of these devices

can not be included in a PRR since this column shares switch boxes with the I/O

column, and often, an additional CLB column is required in the PRR to avoid

intersecting the switch boxes.

5.4.2 Required Reconfigurable Area

A reconfigurable region implements different functional instances at various points

in time, and its area must be sufficient to accommodate the required configurations.

The required area (Ar), in frames, for a PR region is the net area required for

implementing all the module modes assigned to it. This area is calculated by

taking the maximal resource requirement for each resource type, considering the

tile thresholds. Multiplying this by the number of reconfiguration frames for each

tile type, gives an area measurement in terms of frames. Note that there is some
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overhead in this resource requirement due to it being based on whole tiles.

Ar =
∑
i

Wi ∗Ni, i ε CLB,DSP,BlockRAM. (5.1)

where Wj is the number of frames per type of tile i and Ni is the number of tiles

of type i needed.

5.4.3 Actual Reconfigurable Area

When a design is placed, the actual area may differ from the initial requirement due

to the rectangular shape requirement for PR regions or the disparate arrangement

of resources on the FPGA fabric. Mathematically, the actual area (Aa) of a region

is calculated as

Aa =
∑
i

Wi ∗Mi, i ε CLB,DSP,BlockRAM. (5.2)

where Wi is the number of frames per tile of type i and Mi is the number of tiles of

type i covered by the region. The result is the number of frames used to configure

the placed region.

5.4.4 Resource Wastage

The resource wastage for a particular placement of a reconfigurable region (Aw)

is the difference between the actual area and the required area of that region, in

frames. The total resource wastage of a full floorplan (Atw) is the sum of resource

wastage among all the regions.

Aw = Aa − Ar. (5.3)

Atw =
∑
r

Aw. (5.4)
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The floorplanner should try to minimise the total resource wastage in order to min-

imise reconfiguration time and maximise the resources available for implementing

static logic.

5.4.5 Wirelength

Total wirelength is an important parameter in determining the effectiveness of

floorplanning. Here we consider the Manhattan distance between regions and the

total wirelength between two regions is calculated as the product of the Manhattan

distance between them and the number of wires connecting them. Static floor-

planning papers have often considered total Half Perimeter Wire Length (HPWL)

as the minimisation objective. Practically, HPWL has very little impact in FPGA

floorplanning. In ASIC floorplanning, HPWL gives a figure of compactness of cells

and hence the best timing achievable, but in FPGAs, where all resources as well

as routing between them are fixed, HPWL does not give an accurate measure of

timing performance. Manhattan distance is a better metric for calculating total

wirelength for PR designs as the regions are rectangular in shape and the FPGA

routing resources are distributed in rows and columns.

5.4.6 Static Logic

Static logic is the area of the FPGA with fixed functionality, typically containing

the logic that controls reconfiguration, along with low-level bitstream management.

I/O pins are always assigned to the static region, since assigning I/O pins to

reconfigurable regions may cause undesirable switching during reconfiguration.

There is no restriction on the shape of static logic. To make optimal use of

resources, and achieve timing closure, it is better not to restrict the shape of

static logic or allocate a special location for it. The reconfigurable regions should

be floorplanned in such a way that the area available for the implementation of

static logic is maximised.
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Figure 5.1: Target FPGA architecture with two PRRs showing their corre-
sponding coordinates.

5.5 Proposed Floorplanner

The input to our proposed floorplanner is the partition information of reconfig-

urable regions and their connectivity information, obtained from the partitioning

step, described in Chapter 4. A connectivity matrix is used, each element (i,j) of

which, represents the number of nets between region i and region j. The output

of the floorplanner is a set of area constraints, which specify the coordinates of

the bottom left and top right corners of each region. These constraints are used

to generating the user constraints file, which is then used by the vendor place

and route tools to generate the final configuration bitstreams. The floorplanning

problem can be formulated as follows:

Given:

• M regions with resource requirement 3-tuple, (nCLB, nBR and nDSP ) for

each region,

• an FPGA of width W and height H and fixed column distribution,

• with NCLB, NBR and NDSP resources available,

• and R device rows,
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Figure 5.2: Different kernels formed by the combinations of basic tiles.

partition the FPGA into M rectangles, so that:

• each region can be mapped into a rectangle, which contains sufficient re-

sources,

• each rectangle’s height is an integer multiple of device rows,

• no rectangles overlap,

• while minimising the cost function.

The outputs are the (xmin,ymin) and (xmax,ymax) coordinates of each rectangle so

that 0 ≤ xmin ≤ xmax ≤ W and 0 ≤ ymin ≤ ymax ≤ H as shown in Fig. 5.1.

5.5.1 Columnar Kernel Tessellation

Mapping an area directly using FPGA primitives is not practical, due to a number

of factors such as the large search space, limited number of available primitives

in the FPGA, fixed primitive locations and rectangular shape region constraint.

Hence we propose a new method called Columnar Kernel Tessellation. A kernel

is a structure one device row high, containing FPGA primitives, which can be re-

peated in the vertical direction to satisfy a region’s resource requirements. Fig. 5.2

shows a set of possible kernels for a Virtex FPGA. The availability of kernels for

floorplanning a region changes based on the floorplanning of previous regions. The

smallest kernel is a single tile. Each tile can be clustered with nearby tiles to form

new kernels.
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The first step of floorplanning is to calculate the resource usage of each region in

terms of reconfigurable tiles. For this purpose, the input resource utilisation values

are divided by the corresponding number of resources available in a tile. This may

result in some overhead if the resources needed do not use a whole number of

tiles. For example in Virtex-5 FPGAs, the required number of CLBs will be

divided by 20, DSPs by 8, and Block RAMs by 4 and in Virtex-6 FPGAs CLBs

by 40, and DSPs and Block RAMs by 8. Our floorplanner maintains a database

of FPGA architectures that contains information about the resource type of each

device column. The different types of columns are mapped to a single co-ordinate

system for better management. Each tile in the FPGA is encoded using a data-

structure with information including location, resource type, used or not, and

availability. Once a tile has been used to floorplan a region, its use field is set to

true. The tiles belonging to the locations of hard processors and transceivers are

set to be unavailable. To generate kernels, the resource column information from

the database is utilised. For each DSP column, the nearest Block RAM column

location is calculated. The nearest tiles of DSP and Block RAM along with the

tiles between them are merged to create kernels. These kernels are merged again

and larger kernels are created. When kernels are merged, the CLB tiles in between

them are also included in the resulting kernel. All kernels are one device row high.

Regions to be floorplanned are initially sorted in descending order based on re-

source requirements, to create a floorplanning schedule. The resource requirements

give a measure of fitting difficulty for each region; starting with the most resource-

intensive regions generally improves final results. Regions are selected based on

the following ordered criteria:

1. Require both DSP as well as Block RAM tiles,

2. Require DSP and CLB tiles,

3. Require Block RAM and CLB tiles,

4. Require CLBs tiles only.
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Figure 5.3: Example calculation of the size of kernel for a Virtex-5 FPGA.

This classification is based on the fact that DSP tiles are the least available and

hence the most precious FPGA resource. Block RAM tiles are weighted next

and CLB tiles are the most abundant resource available, and so given the least

weighting. Regions belonging to each group are sorted in descending order of DSP,

Block RAM and CLB tiles required. Regions are selected from the scheduling list

in sequential order and floorplanned.

Starting with regions that require both DSP tiles and Block RAM tiles, the floor-

planner selects a kernel that contains both these resources. From the set of avail-

able kernels, the kernel with smallest size is chosen and used for packing. Example

calculation of kernel size is shown in Fig. 5.3. Kernels are repeated in a columnar

direction to meet the region’s resource requirements. The minimum number of

kernels required for packing is equal to the number of DSP tiles required divided

by the number of DSP tiles in the kernel. The maximum number of kernels that

can be used to satisfy the DSP resource requirement is equal to the number of

device rows, i.e. the full device height. If the arrangement of a kernel cannot meet

the required number of DSP tiles, that kernel is discarded and the kernel with

next lowest resource requirement is selected and used for packing.

Once the DSP-BR kernels are packed, the remaining BR and CLB resources re-

quired for that region are calculated. If more Block RAMs are needed, the nearest

Block RAM column is selected from the database and used. Preference is given

to columns towards the right and left edges of the FPGA in order to maximise

free space available towards the centre of the FPGA. If more CLB tiles need to be

allocated, CLB columns towards the device edge are selected and allocated. Once
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the allocation is performed, the tiles which are used are marked in the database

as used.

Now the regions which use only DSP and CLB tiles are packed. For this pur-

pose, the kernels considered contain only DSP tiles and CLB tiles. The minimum

number of kernels required for packing will be equal to the number of DSP tiles

required divided by the number of DSP tiles in the kernel. Tiles which are not

marked as used or not available are used to generate the new set of kernels. This

same process is followed once more for regions containing Block RAMs. Finally,

regions containing only CLB tiles are planned.

The inherent rectangular shape of kernels and the columnar repetition guarantees

that the allocated area for each region will be of rectangular shape and region

height will be an integer multiple of device rows. The floorplanner follows a divide

and conquer method. The packing of each region reduces the search space for

implementing subsequent regions as well as the number of kernels available. The

algorithm runs a number of times, each time starting with a different kernel for

packing. The number of iterations can be specified or the search can be stopped

when a required cost objective is met. At the end of each complete packing, a cost

function is evaluated for the floorplan. The cost is defined as:

CF = α ∗ Atw + β ∗WL. (5.5)

where Atw is the total resource wastage and WL is the total wirelength between

regions. α and β are weight factors with α > β. For designs where reconfiguration

time is highly critical compared to speed of operation, the value of β can be set to

zero and for applications where system operating frequency (maximum operating

frequency) is critical rather than reconfiguration time α can be set to zero. For

other applications, the value of α and β are weighted accordingly.

At the end of each complete floorplan generation, a post processing step is per-

formed, in which the regions are moved along the columnar direction towards the

middle of the device. If this movement improves wirelength, the movement is ac-

cepted otherwise it is rejected. Also, regions that occupy the same columns are
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swapped and wirelength is recalculated. This move is also accepted only if it im-

proves wirelength. This is possible due to the fact that the resources are arranged

in columnar fashion in the FPGA, and moving a region along its columns does not

affect resource availability, provided there are no unavailable tiles in the direction

of movement.

5.6 Case Study

The proposed floorplanner was implemented in Python [106]. A direct comparison

of our method with existing methods is not possible due to the non-availability

of other floorplanning tools and uniform benchmark circuits. Hence, we use a

reported case study, taken from [101], and compared the results using our method.

The system implemented consists of a CAN controller, Floating Point Unit (FPU),

FIR filter, CRC controller and an Ethernet controller, housed in two reconfigurable

regions. The CAN controller, FPU and CRC are implemented in reconfigurable

region 1 (RR 1) and FIR filter and Ethernet controller are implemented in region

2 (RR2), as per [101]. The design is implemented on a Virtex-5 LX30T device.

Region 1 requires 24% of the available CLBs and 5 Block RAMs and region 2

requires 13% of the CLBs. The static region requires 61% of CLBs and 40 Block

RAMs. The resulting floorplan reported in the paper is shown in Fig. 5.4(a). It is

clear that although region 2 does not require Block RAMs or DSPs, the resulting

floorplan includes these resources. This leads to increased region size, higher

reconfiguration time and increased bitstream storage requirement. Furthermore,

these resources cannot be used elsewhere in the design. This floorplan uses a total

of 1766 frames.

A floorplan determined by our method is shown in Fig. 5.4(b). Region 2 is floor-

planned in such a way that no DSP slices and Block RAMs are used. Hence our

method uses 58 fewer frames and reserves more resources for static logic imple-

mentation. The smaller size of the region also contributes to 18.4 KB (9.2×2 since
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Figure 5.4: (a) Resulting floorplan from [101], (b) Resulting floorplan from
our method.

there are two partial bitstreams for that region) less bitstream storage requirement

and a corresponding improvement in reconfiguration time.

For a more complex investigation, we could find no existing work to compare to,

nor standard tools to use, so we floorplanned an in-house design using our proposed

method and compared it to an ad-hoc floorplan based on previous experience with

some optimisation effort. The selected design is a software defined radio (SDR)

targeted for Xilinx Virtex-5 FX70T FPGA. The SDR chain consists of a matched

filter, carrier recovery, demodulator, signal decoder and video decoder. Each mod-

ule has a number of modes with different resource requirements. We assume each

module is assigned to a single region, and hence the resource requirements of each

region are the requirements of the largest mode of the module assigned to it. Here,

all modules are connected in sequential order with a 64 bit wide bus. The static

logic contains a PowerPC-440 embedded processor, external memory interface and

an ICAP controller. The different regions and associated resource requirements

are given in Table 5.1. The rq’d field indicates the exact number of resources

required, the tiles field indicates the required number of tiles needed to satisfy

the resource requirement and the waste field indicates the resources wasted due

to rounding the resources to tiles. The total number of frames wasted due to the

tiling operation is roughly 115 frames.

The ad-hoc floorplanning is done as per Xilinx PR floorplanning guidelines, with

the help of the PlanAhead software. Modules are selected one by one in the

order they appear in the processing chain and placed using the PlanAhead GUI.

Rectangular regions are chosen with the help of the software, which shows the
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Region
CLBs BRs DSPs

#Frms
Rq’d Tiles Wst Rq’d Tiles Wst Rq’d Tiles Wst

Matched Filt. 500 25 0 0 0 0 34 5 6 1040

Carrier Rec. 123 7 17 0 0 0 8 1 0 280

Demodulator 97 5 3 8 2 0 0 0 0 240

Decoder 234 12 6 2 1 2 0 0 0 462

Video Dec. 1100 55 0 6 2 2 34 5 6 2180

Total 2054 104 26 16 5 4 76 11 12 4202

Table 5.1: Resource utilisation for reconfigurable regions.

amount of resources present in the selected region. Modules were placed as close

to each other as possible for better timing performance.

For our automated tool, the order for floorplanning regions is the video decoder

first, followed by the matched filter, carrier recovery, demodulator, and finally the

decoder. The result of the ad-hoc floorplanning and 5 of the best floorplans using

our method are given in Table 5.2. The floorplanner was able to find the solution

in under a minute.

There is no fixed relationship between resource wastage and wirelength, owing

to the rectangular shape requirement of the reconfigurable regions as well as the

Plan No. Wastage, Atw Wirelength, WL
(frames) (Normalised)

Adhoc 956 7420

Plan1 466 8640

Plan2 486 9056

Plan3 592 11776

Plan4 516 7392

Plan5 556 9120

Plan6 530 16736

Plan7 584 9056

Plan8 536 7840

Table 5.2: Resource wastage and total wirelength for different floorplans.
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(a) (b) (c)

Figure 5.5: Floorplans using (a) An ad-hoc approach, (b) proposed method
with minimum resource wastage, (c) with minimum wirelength.

disparate arrangement of resources. The ad-hoc plan, the plan which produces

minimum resource wastage (Plan1) and the plan which gives minimum wirelength

(Plan4) are shown in Fig. 5.5. When the value of α is set to zero in the cost func-

tion, Plan 4 is preferred, and when β is set to zero, Plan 1 is preferred. We can

see that the proposed floorplanner performs well on area: all the floorplans have

lower resource wastage from 38% to 51% less than the ad-hoc approach, which

corresponds to a decrease in reconfiguration from 7% to 9.5% compared to the

ad-hoc plan. Since the modules of the regions are in a continuous chain, the ad-

hoc method is able to achieve good total wirelength. In a typical non-PR FPGA

design, the ad-hoc floorplan is acceptable, since all the resource requirements are

satisfied and wirelength is minimised. But for PR designs, the resource wastage

creates a considerable overhead in terms of reconfiguration time. Moreover, storing

956 configuration frames requires 153 KB extra storage memory for each system

configuration. If the floorplans were determined using HPWL instead of our pro-

posed method, Plan 3 would be selected, and reconfiguration time increases by

21%, while wirelength between modules increases by 15% compared to Plan 1.

Other floorplans are shown in Fig. 5.6.
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(a) (b) (c)

Figure 5.6: Suboptimal Floorplans (a) Plan-2, (b) Plan-3, (c) Plan-5.

These results demonstrate the advantage of considering the required implementa-

tion metrics in floorplanning. While static designs only require the floorplan to

fit and achieve timing, a PR design’s reconfiguration time is also affected by the

floorplan. Our approach ensures this is factored into the floorplanning process,

and results in savings as shown.

5.7 A More Recent Contribution

More recently, researchers have proposed the use of mixed integer linear program-

ming [118]. Their target FPGA model and the optimisation techniques are very

similar to our proposed floorplanner. The ILP formulation is similar to the ap-

proach we adopted for partitioning discussed in Section 4.5.2. In their case study,

the authors compare our floorplanning results for the SDR with the proposed

MILP technique and find that the optimal wirelength achieved is the same as

ours with a slight improvement in area savings. As discussed previously, the main

limitation of their ILP based solution is the long run-time and the generation of

equations corresponding to the problem. For example to floorplan 10 regions, the

MILP based technique takes about 1913 seconds and requires tens of equations,
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which are specific to the problem. Our proposed heuristic technique is able to find

a solution in a few seconds without any manual intervention from the designer.

5.8 Summary

In this chapter we introduced a novel method for PR design floorplaning, that

is fully compatible with the recent vendor-supported PR tool-flows. The hetero-

geneous and irregular architecture of modern FPGA families is considered, and

floorplanning cost functions tailored for PR are introduced. It is worth noting

that this floorplanning method is also compatible with older generations of FP-

GAs such as Virtex-2, where frames extended the whole height of the device,

instead of a single device row. Our study proves that it is possible to optimise the

area requirement considering the tile constraint. We have also found that a signif-

icant area overhead can result from the tiling and rectangular area requirements

of reconfigurable regions. Hence, considering tiling at the partitioning stage, prior

to floorplanning may yield more efficient designs.



Chapter 6

Reconfiguration Controllers for

Adaptive Systems

6.1 Introduction

In Chapters 4 and 5 we discussed design-time optimisations to reduce resource util-

isation and reconfiguration time for PR-based adaptive systems. Run-time man-

agement, involving both the low-level hardware-dependent reconfiguration control

and the high-level software-based reconfiguration management, also plays an im-

portant role in overall system performance. For an adaptive system, reconfigura-

tion time is the time taken to switch from one configuration to another. For a

PR-based implementation, this corresponds to reconfiguring one or more regions

with specific partial bitstreams. During this time, for a dataflow system, it cannot

process data or may need to buffer it. Hence, reconfiguration time must be min-

imised. As discussed in Chapter 2, PR does entail a longer reconfiguration time

than simply spatially multiplexing modules, since a bitstream must be loaded.

For a PR-based system, reconfiguration control and reconfiguration management

can be tightly or loosely coupled. In a tightly-coupled architecture, both reconfigu-

ration control and management are implemented on the same physical FPGA and

in a loosely-coupled architecture, the reconfiguration management is implemented

104
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externally. For a tightly-coupled architecture, either an embedded processor in

the FPGA (such as the ARM processor in the Zynq) or a soft-processor (such

as the Microblaze) can be used to manage reconfiguration. For a loosely-coupled

architecture, an external processor interfaced with the FPGA, directly or through

standard communication interfaces such as UART or PCIe, manages reconfigura-

tion.

Vendor-provided reconfiguration controllers give very low reconfiguration speed al-

though the physical reconfiguration interface is capable of achieving much higher

performance. When software based reconfiguration management is implemented,

vendor-supported approaches burden processors with managing low-level reconfig-

uration operations, adversely affecting reconfiguration time, and possibly making

it hard to use the processor for any other task. Much published work assumes a

dedicated processor for managing the PR process. However, considering proces-

sors are now an important part of many hardware systems, and the emergence of

architectures like the Xilinx Zynq, managing PR is now just one of the embed-

ded processor’s many tasks, and hence this must be considered carefully to ensure

reconfiguration does not impact other important tasks.

In this chapter, we discuss the design of low-level reconfiguration controllers for

PR based adaptive systems. We aim to maximise reconfiguration throughput,

thus minimising reconfiguration time. At the same time, these controllers provide

the necessary infrastructure to enable high-level reconfiguration management, as

discussed in Chapter 7. Existing published work uses ad-hoc software that ref-

erences bitstreams and memory locations explicitly to control PR. We decouple

hardware-dependent reconfiguration functions from overall adaptation manage-

ment, allowing design to be easier for non-experts and system implementation to

be more portable.

The work presented in this chapter has also been discussed in:

• K. Vipin and S. A. Fahmy, A High Speed Open Source Controller for FPGA

Partial Reconfiguration, in Proceedings of the International Conference on
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Figure 6.1: Xilinx ICAP Primitive showing interface signals.

Field Programmable Technology (FPT), Seoul, Korea, December 2012, pp.

61-66 [107].

• K. Vipin and S. A. Fahmy, ZyCAP: Efficient Partial Reconfiguration Man-

agement on the Xilinx Zynq, to appear in IEEE Embedded System Letters

(ESL), vol. 6, 2014 [119].

6.2 Background

The hard-macro in traditional Xilinx FPGAs that serves the purpose of writing

to the configuration memory is the Internal Configuration Access Port (ICAP) as

depicted in Fig. 6.1. The ICAP works the same way as the SelectMAP external

configuration interface but has separate read/write buses [120]. The ICAP data

interface can be set to one of three data widths: 8, 16, or 32 bits. The CSB signal

is the active low interface select signal. The RDWRB signal is the read/write

select signal. For a write operation this signal is held low and for read it is set

high, while keeping the CSB signal low. The BUSY signal is valid only for read

operations and remains low for write operations. Bitstream data should be byte

reversed before being sent to the ICAP. The maximum recommended frequency

of operation for the ICAP is 100 MHz.

The low-level hardware module, which is responsible for delivering bitstreams to

the ICAP macro in the required format, is called a reconfiguration controller. Max-

imising ICAP throughput has a significant effect on minimising configuration time.

The fundamental limiting factor that impacts reconfiguration time is the speed of
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writing data to the configuration memory. Vendor-provided reconfiguration con-

troller IP cores generally have very low throughput. The reconfiguration controller

may have to fetch the bitstream from external non-volatile memory such as Flash

or high-speed volatile memory such as DRAM.

Reconfiguration management involves deciding when and which specific partial

bitstreams are required to changing the system’s configuration. It also includes

passing the required information regarding the partial bitstreams (such as bit-

stream size, location etc.) to the reconfiguration controller. To enable better

flexibility, this is usually implemented in software. For systems that do not imple-

ment a processor in the FPGA, an external processor is required to manage this

operation. The major bottleneck for these systems is the communication overhead

between the control and data planes due to their loosely-coupled architecture. In

Chapter 8, we discuss the communication and reconfiguration management in such

systems in detail, with reference to a PR testbed framework.

In traditional FPGA based adaptive systems, reconfiguration management can also

be implemented purely in hardware. Such systems implement simple reconfigura-

tion decision making based on predefined operating conditions such as temperature

or signal-to-noise ratio. The number of configurations supported by such a sys-

tem will be limited since the partial bitstreams are pre-fetched to on-board volatile

memory. Overall reconfiguration management might be implemented using a state

machine, that encodes changes in system operating conditions.

6.3 Related Work

Traditionally, the reconfiguration operation is controlled by a processor, through

a vendor-provided ICAP controller such as the OPBHWICAP or XPSHWICAP,

connected as a slave device to the processor bus [121, 14]. Using these vendor-

provided controllers gives low throughput in the region of 4.6-10.1 MB/s [122, 104].

The ICAP hard macro itself, however, supports speeds of up to 400 MB/s (32 bits

at 100 MHz).
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In [123], the authors propose connecting the ICAP controller to the fast simplex

link (FSL) bus of a Microblaze soft processor. The drawback is that the processor

becomes consumed with the task of requesting configuration data from external

memory and sending it over the FSL bus. The resulting throughput of under

30 MB/s remains well below the theoretical limit of the ICAP.

Using DMA to transfer partial bitstreams from external memory has previously

been shown to be effective in increasing throughput [124], but there, the authors

do not discuss how bitstreams are initially stored in the external memory. Else-

where, some have tried to achieve better performance by over-clocking the ICAP

primitive [125]. Since the maximum frequency at which the controller can operate

depends upon manufacturing variability and specific placement and routing, this

would need to be determined on a device-by-device basis, which is cumbersome.

Other work on optimised ICAP controllers has often made unrealistic assump-

tions, such as the complete configuration bitstream being stored in FPGA Block

RAMs [104]. This is not practical, as FPGAs have limited memory that is of-

ten insufficient for even a small number of bitstreams, and these memories are

often required for system implementation. We have found no work that abstracts

the details of bitstreams to make higher level reconfiguration management less

implementation dependent.

6.4 Contributions

In this chapter we present two reconfiguration controllers, one which can be used

in loosely coupled reconfigurable systems, and the other in a tightly coupled PR

management environment. The second implementation, called ZyCAP, is particu-

larly targeted at the Zynq hybrid FPGA platforms, although it can be tailored to

any AXI based processor system. Both controllers enable the loading of bitstreams

from external memory at speeds very close to the theoretical limit of the ICAP

primitive, while consuming minimal area. We further enhance the controller’s ca-

pabilities with features that assist in the implementation of adaptive systems that
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Figure 6.2: Custom ICAP controller system architecture showing different
functional blocks and connectivity.

use PR. We compare our work with previous implementations, and show that it is

both faster, and more compact. We also introduce the software driver for ZyCAP

for easy management of PR from a software perspective enabling easy integration

of PR in the standard software flow.

6.5 Custom ICAP Controller for Loosely-Coupled

Systems

In this section we discuss our custom ICAP controller for traditional Xilinx FPGAs

belonging to the Virtex family. Here the reconfiguration management can be

implemented using an external controller or purely in hardware. We describe the

architecture of the proposed reconfiguration controller.

The overall system architecture for our controller is shown in Fig. 6.2. A prepara-

tion phase precedes the system being fully functional. In this phase, all required

partial bitstreams are fetched from outside the system, and stored in on-board

memory. These bitstreams may originate from a file system on some non-volatile

storage, or alternatively be sent from a host PC. In the latter case, we can use a

simple interface such as UART, as this preparation phase is not time-critical. The
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bitstreams are read in over this interface, then pushed through a DMA controller

into the external memory, while storing their location labels in a Configuration

Pointer Buffer for later use. Once preparation is complete, the system is opera-

tional and can now autonomously load partial bitstreams and reconfigure regions.

This involves the transfer of partial bitstreams from the on-board memory to the

ICAP controller using the DMA controller.

6.5.1 DDR Memory Controller

The DDR controller controls the external memory based on the commands from

the DMA controller. This is a DDR3 controller, which controls a 64-bit wide

external memory. This core is generated using Xilinx’s memory interface generator

(MIG) wizard [126]. The core’s read and write data ports are 256 bits wide and

run at 200 MHz.

6.5.2 DMA Controller

The DMA controller is an important component in this system, and is largely re-

sponsible for the high speed. This block performs a DMA write operation to store

partial bitstreams in the external memory during the preparation phase, as well

as reading the bitstreams from memory when reconfiguring regions in the runtime

phase. Before storing a partial bitstream to memory, the DMA controller is armed

with the DMA transfer length in bytes and the starting memory location at which

to store the bitstream. This information is provided to the controller using two

internal registers, which can be set by the external host. During the write opera-

tion, the DMA controller keeps track of the number of bytes present in the FIFO,

and whenever sufficient data is present for a write operation (here, 64 bytes), it

is transferred to the memory controller. During read operations, the DMA con-

troller instructs the memory controller to generate memory read sequences, until

the specified number of bytes are read. To achieve high throughput, the con-

troller issues back-to-back read commands. For read operations, the address and
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data length can be obtained either from a host system, or from the configuration

pointer buffer. The DMA controller and the memory controller coordinate their

operations using a producer-consumer model handshake.

6.5.3 FIFO Interface

Partial bitstreams are temporarily stored in a FIFO before being loaded into the

DDR memory from the host system during the preparation phase. This interface

serves two purposes: the host interface can be changed without affecting the re-

mainder of the system, and data can be packed, allowing the host interface width

to be different from the data width of the system memory interface. At present,

UART data comes in one byte at a time and the system memory controller write

width is 32 bytes; this difference is accommodated by the FIFO interface.

6.5.4 Configuration Pointer Buffer

This buffer stores the sizes of the partial bitstreams as well as their starting lo-

cations in the external memory. These parameters are stored automatically when

the DMA controller transfers partial bitstreams to the external memory in the

preparation phase. Each set of parameters has a reference number, which is their

ordinal number of transfer from the host system. The advantage of using this

buffer is that when the system is in the runtime phase, a reconfiguration manager

can load partial bitstreams using just their pointer label, rather than it having

to be aware of any further bitstream details. The DMA engine configurations

as well as programming sequences are done automatically by the state machine

controlling this buffer.

6.5.5 Statistics

The statistics block contains two hardware counters for system performance moni-

toring. The first counter measures the overall performance by measuring the num-

ber of clock cycles required for reconfiguration to complete after the command is
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issued. The second counter measures the performance of the ICAP controller. The

values present in these registers can be accessed from a host system through the

UART interface, or used within the rest of the adaptive system. The presence of

hardware counters provides precise system performance measures in comparison to

inaccurate software counters, and can be used by the adaptive control for efficient

system management.

Another parameter monitored by this block is the number of times each partial bit-

stream is used for reconfiguration. In an adaptive system scenario, this information

gives an overview of the conditions in which the system is operating, since different

partial bitstreams are used depending upon system conditions. This information

could be used to further optimise PR design details, such as the partitioning, or

improve performance through configuration prefetching [127].

6.5.6 UART

In our example implementation, a host PC implements the reconfiguration man-

agement. The PR system can interface with the external host using a serial inter-

face. This RS-232 interface can be used to transfer partial bitstreams into external

memory during the preparation phase and for issuing commands from the host PC

at runtime. A simple serial interface has several advantages including the lack of a

special driver being needed for communication. The commands available for host

system control are listed in Table 6.1.

6.5.7 ICAP Controller

The detailed architecture of the ICAP controller is shown in Fig. 6.3. It consists

of an asynchronous FIFO, clock manager, ICAP control state machine and the

ICAP hardmacro. The asynchronous FIFO is used to temporarily store the partial

bitstreams from external memory, before they are sent to the ICAP macro. The

system is able to achieve high throughput due to the presence of the asynchronous

FIFO that has different read and write clock frequencies. The depth of this FIFO
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Figure 6.3: ICAP controller architecture.

can be configured to achieve better performance. Operation of read and write

ports is properly managed using the fifo full and fifo empty signals, synchronised

with the write and read clock domains, respectively. In our design, the write clock

frequency is equal to the DDR controller clock frequency and the write data width

is 256 bits. The write enable port is connected to the ddr read data valid signal.

Whenever valid data emerges from the DDR memory, it is stored in this FIFO. The

Command Action

SRST Soft Reset: Reset all logic except the memory controller

SLEN Set byte transfer length for DMA

SADR Set the starting address for DMA

CMOD Command mode: Disable DMA controller

DMOD Data mode: Enable DMA controller

PICP Start reconfiguration

CINT Reconfiguration using the pointers from config. buffer

RST1 Read statistics register 1

RST2 Read statistics register 2

NCON Read number of times the specified partial bitstream is used

SCFQ Set ICAP clock frequency

Table 6.1: Supported Host Commands.
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Figure 6.4: Chipscope capture of the custom ICAP controller operation.

read clock frequency of the FIFO is equal to the ICAP controller clock frequency,

and the read width is set to the maximum allowable 32 bits for performance.

An MMCM (mixed-mode clock manager) is used to derive the required ICAP clock

frequency from the on-board clock source. The MMCM output clock frequency is

set to 100 MHz, which is the maximum frequency recommended by Xilinx.

Configuration bitstreams are loaded into the configuration memory using the ICAP

hard-macro. During partial reconfiguration, we are only interested in writing into

the configuration memory, so the read/write port is permanently grounded. As

we only support writing to the ICAP, the controller is more compact than many

existing designs that include extra circuitry to allow reading of configuration data.

The write operation to the ICAP is managed by a state machine that continuously

senses the fifo empty signal of the asynchronous FIFO. Whenever the fifo empty

signal is de-asserted, it indicates valid data is available in the FIFO. The state

machine asserts the read enable signal of the FIFO and after one clock cycle,

asserts the icap enable signal of the ICAP. When the empty signal becomes high,

the read enable and icap enable signals are de-asserted. In order to minimise

resource utilisation, no counters are implemented in the ICAP controller to track

the number of bytes written to the configuration memory. Whenever there is data

in the FIFO, it is written to the ICAP. The DMA controller must ensure that all

required configuration bytes are read from the external memory.
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The fifo full signal is used by the DMA controller, and is asserted when half

the FIFO is filled. Whenever the DMA controller senses this signal is high, it

stops issuing memory read commands. There can be outstanding memory read

requests equal to up to half the FIFO depth made by the DMA controller. The

programmable full signal ensures that no buffer overflow occurs.

Fig. 6.4 shows the detailed operation of the reconfiguration process. This is cap-

tured using the Xilinx Chipscope analyser. As soon as the reconfigure command

is issued from the host system, the program signal is asserted for one clock cycle.

Immediately, the DDR read commands are issued by the DMA controller. The

ddr read and the ddr rd done are the handshaking signals between the DMA con-

troller and memory controller. The ddr rd valid signal indicates valid data from

the memory and is used as the write enable signal for the asynchronous FIFO.

When data is written into the FIFO, the fifo empty signal gets de-asserted. Sens-

ing this, the ICAP control state machine enables the ICAP controller by negating

the icap en signal and configuration data is sent to the ICAP. It can be seen

that the DDR read and the configuration process happen simultaneously after

the initial memory read latency. This is the primary reason for the overall high

throughput of our design.

6.5.8 Using the Dynamic Reconfiguration Port (DRP)

Researchers have tried over-clocking the ICAP to achieve higher performance.

According to Xilinx, the maximum clock frequency at which ICAP is guaranteed

to correctly operate is 100 MHz. It has been reported that the ICAP can run

at up to 550 MHz [125]. However, this maximum clock frequency depends upon

the device speed grade, manufacturing variability, and detailed custom placement

and routing. A clock frequency which is suitable for one specific FPGA may

not be suitable for another, even with the same speed grade, and Xilinx does

not guarantee proper ICAP operation above 100 MHz. Clock generating circuits

cannot be modified using PR, since Xilinx requires that all the clock modifying

components such as phase locked loops (PLLs) and digital clock managers (DCMs)



Chapter 6 Reconfiguration Controllers for Adaptive Systems 116

reside in the static region. In order to overcome this issue, we make use of a

feature available in the Virtex-6 MMCM known as the dynamic reconfiguration

port (DRP).

The DRP makes it possible to configure the output frequency of the MMCM at

runtime. This is achieved by modifying the internal registers of the MMCM using

the DRP. Hence, we start operation of our controller at 100 MHz. Subsequently,

the operating frequency is increased, until the reconfiguration process fails. The

operating frequency is then fixed at just below the failing frequency.

In our initial implementation the clock frequency must be manually tuned by

issuing commands from the host system. We have enhanced this feature in a sub-

sequent implementation, with the operating frequency dynamically changed based

on the output of an on-chip temperature sensor. When the chip core temperature

is below a predefined threshold value (40◦C), the ICAP is clocked close to 200

MHz and when the temperature exceeds this value, the clock frequency is reduced

to 100 MHz. This overclocking capability can allow us to achieve throughputs

beyond the 400 MB/s theoretical maximum supported at 100 MHz.

6.6 Characterisation and Case Study

In this section we report the performance and resource utilisation for our custom

reconfiguration controller. We also compare our implementations with the state

of the art and demonstrate the advantages of our custom solution through case

studies.

The reconfiguration controller design presented in Section 6.5 was synthesised

using Xilinx ISE 13.3, and was implemented using Xilinx PlanAhead 13.3. In ad-

dition to the system discussed in Section 6.5, two partially reconfigurable modules

were also implemented in order to test the performance and validate functionality,

as shown in Fig. 6.5. The modules are assigned to two separate regions, one large

and the other small. The system was hardware validated by testing it on a Xilinx
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Figure 6.5: Controller performance test setup.

ML605 evaluation board, which contains a Virtex 6 XC6VLX240T FPGA. The

resource utilisation for the two major modules in the design is given in Table 6.2.

The ICAP controller is able to achieve a maximum frequency of 516 MHz when

implemented as a standalone module and the complete system is able to run at

200 MHz.

Table 6.3 shows the performance of the ICAP controller as well as overall system

performance. These values are calculated with the help of the statistics coun-

ters present in the system. The theoretical maximum performance is 400 MB/s,

based on the 100 MHz clock and 32-bit ICAP width. Total performance is slightly

less than this due to the initial memory access latency and because DDR read

operations are 64-Byte aligned. As the bitstream size increases, the initial la-

tency becomes negligible compared to the total reconfiguration time, and hence

the throughput increases. From Table 6.3, it can be seen that the controller takes

Module Resource Utilisation Max. Frequency

FFs LUTs BRAMs (MHz)

ICAP Controller 74 38 8 516

DMA Controller 598 548 0 265

Total 672 586 8 265

Table 6.2: Custom ICAP controller resource utilisation.
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Figure 6.6: Processor based PR system.

about 633 microseconds to configure a 400 CLB region (253096 bytes), an im-

provement of 44 times over the Xilinx XPS HWICAP, which would require 27.8

milliseconds. Our controller would take a few milliseconds for a near complete

FPGA reconfiguration rather than hundreds of milliseconds.

The maximum throughput and resource utilisation of some other ICAP controller

implementations are shown in Table 6.4. Our implementation performs better

than all these implementations, and is also highly compact.

In addition, we tried to improve the ICAP performance by overclocking it using

the DRP feature of the MMCM. The ICAP controller was able to successfully

reconfigure the system when set to clock frequencies of up to 210 MHz. Presently,

Bitstream Size Recon. Time ICAP Throughput Total Throughput

(Bytes) (us) (MB/S) (MB/S)

5000 12.86 395.50 388.60

12568 31.75 399.94 395.84

63456 159.00 399.79 399.23

126912 317.50 400.00 399.70

253096 633.00 399.96 399.80

Table 6.3: Bitstream size and system performance.
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Implementation Resource Utilisation Throughput

FFs LUTs BRAMs ( MB/s)

Liu et al. 2009 [104] 1083 918 2 235.20

Claus et al. 2008 [128] NA NA NA 295.40

Manet et al. 2008 [129] NA NA NA 353.20

Liu et al. 2009 [104] 963 469 32 371.40

Liu et al. 2009 [104] 367 336 0 392.74

Xilinx (PLB) [14] 746 799 1 8.48

Xilinx (AXI) [25] 477 502 1 9.10

Proposed (with DMA) 672 586 8 399.80

Table 6.4: Performance comparison of ICAP controller implementations.

we manually verify that there are no configuration errors by checking the function-

ality of the reconfigured modules. More thorough checking would require ICAP

read capability, which we hope to investigate in future work. The overall system

performance for different clock frequencies is given in Fig. 6.7. Above 210 MHz, no

reconfiguration occurs, and above 300 MHz, initiating a reconfiguration freezes the

whole FPGA. At 210 MHz, the overall throughput is 838.55 MB/s, which is more

than double the throughput at 100 MHz, resulting in a corresponding decrease in

reconfiguration time.

In order to compare the performance of the widely used Xilinx ICAP controllers,

a typical processor-based PR system was also implemented as shown in Fig. 6.6.

This system consists of a MicroBlaze soft processor, a DDR3 memory controller,

the ICAP controller, a timer, Xilinx flash controller, UART controller, and a

reconfigurable module. All the peripheral devices were initially connected to a

64-bit wide PLBv46 bus. The partial bitstreams can be stored either in DDR3

memory or in the flash memory. Partial bitstreams are transferred to the DDR3

memory using the UART interface and written to the flash memory using a host
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Figure 6.7: Frequency vs Total Throughput.

flash memory writer. The timer peripheral is used to determine the time required

for reconfiguration. The system runs at 100 MHz with the instruction as well as

data memory implemented in internal BRAMs. Software for performing the PR

operation was written in C and compiled using the Xilinx Software Development

Kit (SDK), and the hardware platform was implemented using Xilinx Embedded

Design Kit (EDK) 13.3, with hardware design using PlanAhead 13.3. The low-

level routines for controlling the ICAP controller, as well as flash memory, are

taken from Xilinx standard libraries.

For out experiments, reconfiguration commands are issued from the host system

using the UART interface. If the partial bitstreams are stored in DDR3 memory,

they are transferred using the UART interface by calling a routine. When the

processor receives a reconfiguration command, it resets the performance measure-

ment timer and invokes appropriate routines to transfer the partial bitstream to

the ICAP controller depending upon its storage location. Once the reconfigura-

tion operation is completed, the timer is halted and the value stored in it is read.

The timer reports the total number of clock cycles required for the operation,

and from this, the throughput can be determined. For the PLB system, Xilinx’s

XPS HWICAP [14] was used as the ICAP controller. When the bitstreams are

stored in flash memory, the reconfiguration throughput is only 0.47 MB/s and when

stored in the DDR3 memory, the throughput is 8.4 MB/s. These values prove that
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present processor-based ICAP controllers are unsuitable for time-critical reconfig-

uration scenarios.

The same experiment was repeated using the latest AXI-bus based design. In

this system, the DDR3 controller is connected to an AXI4 bus and other pe-

ripherals to AXI4-lite bus. The ICAP controller used in this experiment is the

AXI HWICAP [130]. When using the AXI-bus, system performance is slightly

improved. The reconfiguration throughput while using the flash is 0.49 MB/s, and

using the DDR3 memory to store the bitstreams gives 9.1 MB/s. These values are

still well below what is possible, as we have shown with our design.

6.7 ZyCAP: A Reconfiguration Controller for Tightly

Coupled Adaptive Systems

In this section we discuss our reconfiguration controller specially targeting Zynq

Hybrid FPGAs. On the Zynq, The PL can be reconfigured from the PS or from

within the PL itself. The PS uses the device configuration interface (DevC), which

has a dedicated DMA controller to transfer bitstreams from external memory to

the PCAP (processor configuration access port) for reconfiguration. The Zynq also

has an ICAP primitive in the PL, as found in other Xilinx FPGAs. The ICAP has

a 32-bit, 100MHz streaming interface, providing up to 400 MB/s reconfiguration

throughput.

Officially, Xilinx supports two schemes for PR on the Zynq, one through the PCAP

and the other through the ICAP. By specifying the starting location and size, the

library function XDcfg TransferBitfile() can be used to transfer PR bitstreams

from external memory (DRAM) to the PCAP. The main advantage of this scheme

is that it does not require any PL resources and gives a moderate reconfiguration

throughput of 128 MB/s. The main drawback is that it blocks the processor during

reconfiguration, precluding overlapped execution and reconfiguration.
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Xilinx also provides an IP core (AXI HWICAP) and library function (XHw-

Icap DeviceWrite()) to enable PR using the ICAP. The AXI-Lite interface of the

core is used to connect it to the PS through a GP port. Since this method is not

DMA based, throughput is only 19 MB/s. This approach also blocks the processor,

and is hence inferior to the PCAP approach.

We have modified the ICAP approach by interfacing the hard DMA controller

in the PS with the AXI HWICAP IP and writing a custom driver function. An

interrupt from the DMA controller is used to indicate completion of reconfigura-

tion. The achievable throughput in such a case is 67 MB/s, which is significantly

slower than through the PCAP. Since the AXI HWICAP IP has a single AXI-Lite

interface, it is not possible to connect it to the HP port for better performance.

However, this scheme has an advantage in that it is interrupt based and hence

reconfiguration can be overlapped with processing.

Systems using embedded processors for reconfiguration management require rela-

tively lean reconfiguration management and their reconfiguration controllers should

be capable of functioning with minimal processor intervention, due to the limited

processing capability of embedded processors. Present vendor-supported recon-

figuration management schemes overload processors with low-level reconfiguration

operations which make them unavailable for executing other software tasks.

6.7.1 Effect of Reconfiguration on Performance

In this section, we discuss the effect of PR on systems which follow a hardware-

software co-execution model for data processing and reconfiguration. Adaptive

systems are a special case of such systems, where the reconfigurable fabric is used

to implement the data plane and the processor is used for system monitoring and

reconfiguration management. The fabric implements multiple hardware modules

to implement data processing, which can be further chained together to implement
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different hardware processing chains (configurations). Adopting PR enables selec-

tive reconfiguration of hardware modules, which is otherwise impossible through

traditional reconfiguration where all modules are reconfigured simultaneously.

More generally, there may be systems where only some of the datapath processing

is done in hardware, and in such cases, the hardware and software components

of execution heavily depend on each other. In such cases, long reconfiguration

times can severely affect system performance and even offset the benefits achieved

through hardware acceleration. Hence, whether for adaptive systems, or more gen-

eral software-hardware systems using PR, it is essential that both reconfiguration

throughput be maximised, and that the processor not be overly burdened by man-

aging reconfiguration. The latter property also enables reconfiguration latency to

be hidden to a certain extent, by overlapping reconfiguration with execution of

other software tasks.

To understand the impact of PR on the performance of such software-hardware

systems, consider the typical profile for an hardware task execution as depicted

in Fig. 6.8. The system configures the hardware module on the fabric, sends in-

put data, triggers execution, then reads back the output after execution. Tsetup

is the time taken to decide whether a reconfiguration is required, Tconfig is the

reconfiguration time, Tcontrol is the time taken to trigger the hardware, Tdatain is

the time to send data to the hardware, Tcompute is the hardware execution time

and Tdataout is the time for the results to be read back. This profile shows that

efficient management functions are paramount in maximising the benefits offered

by hardware acceleration. Tdatain and Tdataout depend upon the system architecture

and how data movement is managed. Tcontrol is usually negligible, involving reg-

ister configurations. A PR system should minimise Tsetup , while also maximising

reconfiguration throughput to minimise Tconfig . If the processor is used to manage

all the reconfiguration steps, then it is not available for other tasks. This is espe-

cially true when the number of hardware tasks and frequency of reconfiguration

increases [131].
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Figure 6.8: Task profile for implementing hardware acceleration [132].
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Figure 6.9: Effect of overlapping hardware and software execution. (a) Pro-
cessing and reconfiguration happening sequentially. (b) Reconfiguration in par-
allel with processing for dependent tasks. C1 and C2 represent hardware re-
configurations and B represents blanking the PRR. (c) Software and hardware

running independent tasks with minimal software management overhead.

The desire is that the processor handles only high-level reconfiguration manage-

ment while the lower level mechanics are managed separately. The advantage of

this approach is that execution of tasks on the processor and reconfiguration of

the PL can be overlapped. Fig. 6.9 shows the profile for an application compris-

ing two software and two hardware tasks executed alternately. In Fig. 6.9(a), the

processor manages configuration, and so must wait for this to complete before

executing its software tasks. Fig. 6.9(b), shows how the overall execution time is

reduced when the processor is only tasked with initiating the reconfiguration. The

reconfigurable region can be blanked when no hardware is used to reduce power

consumption without compromising system performance. In Fig. 6.9(c) we show

the potential gains for independent tasks; now that the processor is freed from

low-level configuration management, it can continue with other tasks (subject to

dependencies).
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Figure 6.10: ZyCAP showing interface connections.

6.7.2 ZyCAP PR Controller

To achieve maximum reconfiguration performance, we have developed a custom

controller, called ZyCAP, and an associated driver, to verify whether such a solu-

tion can improve on PCAP performance, while reducing processor PR management

overhead. As discussed in the Section 6.6, our experiments with traditional FPGAs

such as the Virtex-6 showed that a custom solution can provide near theoretical

peak reconfiguration throughput. But that custom controller was designed for

non-processor systems, and hence did not provide a software-centric view, making

it difficult to port to the Zynq.

ZyCAP has two interfaces, an AXI-Lite interface connected to the PS through a

GP port and an AXI4 interface connected to an HP port, as shown in Fig. 6.10.

Since it adheres to Xilinx’s pcore specification, ZyCAP can be used like other IP

cores in Xilinx XPS. Internally, ZyCAP instantiates a soft DMA controller, an

ICAP manager and the ICAP primitive. The DMA controller is configured with

the starting address and size of the PR bitstream through the AXI-Lite interface

and bitstreams are transferred from external memory (DRAM) to the controller

at high speed through the HP port using the burst-capable AXI4 interface. The

ICAP manager converts the streaming data received from the DMA controller to

the required format for the ICAP primitive. ZyCAP raises an interrupt once the

bitstream has been fully transferred to the ICAP.
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6.7.3 ZyCAP Software Driver

Along with high reconfiguration throughput, lean run-time reconfiguration man-

agement is also required for better system performance. The ZyCAP software

driver implements management functions such as transfer of bitstreams from non-

volatile memory to the DRAM, memory management for partial bitstreams, bit-

stream caching, ZyCAP hardware management and interrupt synchronisation.

The driver provides an API through which high-level software applications can

manage PR.

The driver is initialised with the Init Zycap() call, which allocates buffers in

DRAM for storing bitstreams, configures the DevC interface, and configures the

interrupt controller. The number of bitstreams buffered in DRAM is configurable

and defaults to five. A reconfiguration is initialised using the Config PR Bitstream()

function, by specifying only the bitstream name. Unlike existing vendor APIs, the

software designer does not need to know where the bitstream is stored or what

API Call with Brief Description

Init Zycap()

Initialise the Zycap controller, memory allocate
for PR bitstreams

Config PR Bitstream(bitstream name,

intr sync)

Reprogram by loading a bitstream from the ex-
ternal flash using ICAP

Prefetch PR Bitstream(bitstream name)

Prefetch the PR bitstream from SD card to
DRAM

Sync Zycap()

Synchronise Zycap reconfiguration interrupt

Table 6.5: ZyCAP API functions.
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the bitstream size is. The driver internally manages partial bitstream information

such as the bitstream name, size and DRAM location.

When a configuration command is received, it first checks if the bitstream is cached

in DRAM, and if so configures the ZyCAP soft DMA controller with the bitstream

location and size to trigger reconfiguration. If it is not cached, it is transferred

from non-volatile memory (SD card) to a buffer in the DRAM and the corre-

sponding data structure is created. If all DRAM bitstream slots are full, the least

recently used (LRU) bitstream is replaced. The driver also enables pre-caching of

bitstreams in the DRAM using the Prefetch PR Bitstream() function.

The driver supports deferred interrupt synchronisation, which enables non-blocking

processor operation during reconfiguration. By setting the intr sync argument

in Config PR Bitstream(), the function returns immediately after configuring

the DMA controller. The interrupt corresponding to the reconfiguration can be

synchronised later using the Sync Zycap() call before accessing the reconfigured

peripheral. In this way the processor is free to execute other software tasks while

reconfiguration is in progress. If intr sync is set to zero, the driver operates in

blocking mode and returns only after reconfiguration.

6.7.4 ZyCAP Performance

In our evaluation, ZyCAP achieves a reconfiguration throughput of 382MB/s (95.5

% of the theoretical maximum), improving over AXI HW ICAP, DMA based

AXI HW ICAP, and PCAP by 20×, 5.7×, and 2.98×, respectively. The deviation

from theoretical maximum is due to the software overhead for DMA controller

configuration, DRAM access latency and interrupt synchronisation. A compari-

son of different PR methods in terms of resource utilisation and reconfiguration

throughput is shown in Table 6.6.

To analyse the effect of different PR schemes on overall software-hardware system

performance, we consider a case study from [132]. The experiment involves image

edge detection after a low-pass filter is applied to a set of images. Each image is
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Method Resource Utilisation Throughput

FFs LUTs BRAMs (MB/s)

PCAP 0 0 0 128

Xilinx ICAP (non-DMA) 443 296 0 19

Xilinx ICAP (with DMA) 443 296 0 67

ZyCAP 806 620 0 382

Table 6.6: Comparison of resource utilisation for different PR methods on the
Zynq.

processed twice. First, through a median filter followed by Sobel edge detection,

then a smoothing filter followed by Sobel. The modules used for the experiments

are reconfigured sequentially in a single PRR. An image is first transferred from

external memory to a processing core and the processed image is streamed back

to the memory via DMA. After each step, the output is analysed by the processor

for quality checks.

For our experiments, we use the ZedBoard [133].The PRR size is 2300 CLBs, 60

DSP blocks and 50 BRAMs, large enough to accommodate the largest module

(smoothing filter). The partial bitstream size is 1,018,080 Bytes while a full Zynq

bitstream would be 4,045,564 Bytes. A soft DMA controller is used to transfer

data between the external memory and the processing core through an HP port

and a hardware timer is interfaced for accurate performance measurement. All PL

components run at 100MHz. The hardware and software for this evaluation are

developed using Xilinx’s EDK 14.6 and PlanAhead 14.6 software versions.

DMA transfers between the external memory and the PRR are measured at

382 MB/s. Throughput between the processor and the external memory is 128 MB/s.

The latency for accessing a peripheral from the processor is 140ns. To configure

the DMA controller and manage data movement, 8 registers are configured by

the processor, consuming 1.12us. These map to the execution time parameters
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Parameter Desig. Value (Sec.)

Decision time Tsetup 0

Reconfiguration time Tconfig 0.970/T

Transfer of control time Tcontrol 1.12× 10−6

Data send time Tdatain (B/400.5)× 10−6

Compute time Tcompute 0

Data receive time Tdataout (B/134.2)× 10−6

Table 6.7: Timing parameters for the Case study.

described in Section 6.7 as shown in Table 6.7 for processing B Bytes of data at a

reconfiguration speed of T MB/s.

Since this application uses a single PRR and follows a predefined reconfiguration

sequence, no decision time is required (Tsetup = 0). Reconfiguration time depends

upon the reconfiguration scheme used, while Tcontrol corresponds to DMA controller

configuration. Tcompute = 0 since the cores operate in streaming mode. Each

iteration requires two configurations and two sets of DMA operations.For schemes

that do not support overlapped reconfiguration, the processor can only execute its

quality checks after configuring the hardware for next iteration. For overlapped

schemes, the processor can do this while the hardware is being reconfigured.

Fig. 6.11 shows the effect of the different reconfiguration schemes on system

throughput for different image sizes. As frame size increases, parallel hardware

and software execution (solid lines) has a clear benefit. In these cases, when the

software execution time is smaller than the reconfiguration time, the PCAP based

method has a significant advantage over the DMA based AXI HWICAP due to

its higher throughput. However, as the data size increases (above 512×512 pix-

els), overlapped reconfiguration becomes more important, and the DMA based

AXI HWICAP outperforms the PCAP method since software execution time is

now comparable to reconfiguration time. For large frame sizes, the performance

of the DMA based methods converges since the reconfiguration time begins to
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Figure 6.11: Comparison of total number of pixels processed for different PR
schemes. Solid lines represent hardware-software co-execution and dotted lines

represent sequential hardware and software execution.

diminish with regard to software execution time. The same is true for blocking

non-DMA based methods, but they saturate at a lower overall throughput. At

an image size of 512×512, ZyCAP increases application throughput by 11.35×,

3.28×, and 2.96×, over AXI HW ICAP, DMA based AXI HW ICAP, and PCAP,

respectively.

6.8 Summary

In this chapter we discussed the role of reconfiguration controllers in achieving bet-

ter system performance for PR-based adaptive systems. We presented two custom

reconfiguration controllers, which significantly improve reconfiguration through-

put in traditional FPGAs and hybrid FPGAs like the Zynq. The reconfiguration

controller for loosely coupled architectures is later adapted to develop a PR hard-

ware verification platform as discussed in Chapter 8. The ZyCAP device driver

presented allows overlapped execution and reconfiguration, resulting in improved

overall system performance for mixed software-hardware systems. The ZyCAP

hardware can be similarly used with soft processors like the Microblaze, but driver

software modifications are required for interrupt management. ZyCap also plays
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a significant role in automating PR development on hybrid FPGAs as discussed

in Chapter 7.

Both the reconfiguration controllers are released in the public domain, for use by

researchers intending to incorporate PR into their systems, allowing the focus to

be on the application rather than optimisations of PR mechanisms.



Chapter 7

An Automated PR Tool-flow for

Adaptive Systems

7.1 Introduction

A fully automated flow that allows adaptive systems designers to map applications

to a PR design without the need for FPGA expertise has so far failed to materialise.

We believe this is an essential step in PR achieving more widespread adoption, as

it is the application experts who can best identify the scenarios that make sense

for PR, and use it within the context of realistic applications. Although models

have been proposed for mapping adaptive system descriptions to FPGAs, actual

implementation of the resulting systems remains challenging [134, 135]. As it

stands, FPGA experts come up with small, unrealistic example applications that

fail to capture the interest of application designers.

The tools and techniques we have discussed so far focussed on individual aspects

of PR including design time optimisations and reconfiguration control techniques.

In this chapter we propose a framework which integrates these to create an au-

tomated tool-flow, which maps a high-level system description into a hardware

implementation and generates the required management software. The run-time

management of adaptive systems is also explained in detail. We believe that for

132
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low-level device architecture-dependent operations, such as place and route and

bitstream generation, vendor tools provide superior performance compared to cus-

tom tools. They also avoid problems with porting and incompatibilities as new

devices are released. Hence, instead of circumventing the limitations imposed by

these tools, our framework respects these constraints, making it portable as the

architectures and tool-flows evolve.

We concentrate on the new Xilinx Zynq hybrid FPGAs as the target implementa-

tion platform due to their tightly coupled processor-fabric architecture. Compute-

intensive configurations can be implemented on the reconfigurable fabric while

complex adaptation algorithms can be implemented in software, making them

easily programmable. This work is the first fully automated flow for mapping high-

level descriptions of adaptive systems to hybrid FPGAs. This co-design framework

for PR is called CoPR for Zynq.

The work presented in this chapter has also been discussed in:

• K. Vipin and S. A. Fahmy, Enabling High Level Design of Adaptive Systems

with Partial Reconfiguration, PhD Forum Poster, in Proceedings of the Inter-

national Conference on Field Programmable Technology (FPT), New Delhi,

2011 [136].

• K. Vipin and S. A. Fahmy, Automated Partial Reconfiguration Design for

Adaptive Systems with CoPR for Zynq, in Proceedings of the International

Conference on Field Programmable Custom Computing Machines (FCCM),

Boston, Massachusetts, May 2014, pp. 202–205 [137].

7.2 Contributions

1. An automated end-to-end tool flow for PR based adaptive systems, suitable

for non experts, that maps high-level system descriptions to a real imple-

mentations on hybrid FPGAs.
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Figure 7.1: The control and data planes of an adaptive system. The two
planes interact through events and actions. M1, M2, M3, and M4 represent

different hardware modules and the dataflow is from left to right.

2. A runtime configuration manager that provides an API for describing adap-

tation through the abstraction, with automated seamless management of the

PR process.

Our framework can equally serve as the implementation basis for other techniques

like time-mutliplexing of task graphs, where configurations are statically deter-

mined.

7.3 Mapping Dynamically Adaptive Systems

This section describes different aspects of adaptive systems and their mapping

onto hybrid-FPGAs. First, we describe the adaptive system model and define

the terms used, along with our tool flow. Then we explain the integration of our

custom tools with the vendor PR implementation tool chain.

7.3.1 System Decomposition

The system level architecture for adaptive systems we have chosen is depicted in

Fig. 7.1. The overall system is divided into two logical planes, namely the control

plane and the data plane. The configurations, that complete data processing,

are within the data plane while the control plane monitors and regulates system
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Figure 7.2: The control loop showing different activities.

state, managing reconfiguration. The data plane can be made to support intensive

computation by mapping it to hardware. Meanwhile, the control plane typically

functions at a much lower data rate, but might use complex sequential algorithms,

and is hence more suitable for software implementation.

The data plane is composed of several functional units, such asM1,M2,M3 andM4,

interfaced with each other as shown in Fig. 7.1. We define the atomic functional

unit as a module, such as an edge detector in image processing. Each module may

have a set of parameters that determine its operating characteristics, such as the

cut-off frequency of a filter module. These parameters can be modified at runtime

to control functionality and hence data plane behaviour.

The control plane implements the configuration manager (CM). The CM moni-

tors and regulates system state by implementing the control loop [138]. As shown

in Fig. 7.2, the loop consists of 4 key activities namely observe, analyse, de-

cide, and act [139]. The loop constantly monitors the system environment to

detect changes in operating conditions called events. These are analysed to de-

cide whether changes in system state are required and how to reach the intended

state through actions. This analysis can be based on other models, theories or

rules. Based on the analysis results, the system makes decisions such as whether

or not an adaptation is required, and if required how to reach the intended sys-

tem state. The decision making can be off-line (determined at design time) such
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as state machine based adaptation or on-line (determined at run-time) based on

evolutionary approaches such as genetic algorithms. Control plane actions usually

involve modification of the data plane (reconfiguration) to support operation in

the new environment. The control loop model is more concerned with system

management and does not include the actual flow of data in the system. In the

next section we discuss computation models used for data processing.

7.4 Models of Computation

A model of computation (MoC) defines the allowable operations or primitives in

a system and the communication semantics that govern their interactions. While

there is no agreed upon model for adaptive systems, we can model the data plane

and control planes separately with a clear definition of interactions between them.

In the data plane, the model specifies how modules are interfaced with each other

and how data communication is managed among them. We are primarily inter-

est in MoCs for concurrent execution since a hardware-based adaptive system is

inherently parallel.

7.4.1 Kahn Process Networks

Kahn Process Networks (KPN) is a computing paradigm, where a number of

concurrent processes interact each other through communication links [140, 141].

Processes are functions executing asynchronously, which map input data elements

or tokens to output tokens. Processes can interact with each other only through

the communication channels, which are modelled as First-in First-Out (FIFO)

queues with unbounded capacity. Each channel can possibly contain an infinite

number of tokens, each of which can be produced and consumed only once. Writes

to channels are non-blocking (write operations succeed immediately) but read op-

erations are blocking. In other words, a process is stalled until it receives sufficient

data from the input channels to satisfy the operation [142]. Non-blocking writes
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Figure 7.3: Kahn Process Network (KPN) example showing different processes
(f, j, g and h) and communication channels.

mean each channel should have infinite capacity. KPN is highly suitable for mod-

elling steaming applications such as video and audio processing, signal processing,

and 3D multimedia applications [143], which are classical targets for FPGA im-

plementation.

Fig. 7.3 shows an example KPN in a graphical form. Here graph nodes f, g, h and j

represent different processes. The arcs between the nodes represent communication

links and the direction of data flow. The labels X, Y, Z, P and T represent the

streams of data flowing through the links. A stream is defined as a finite or

infinite sequence of data tokens: X = [x1,x2,x3,...]. (X,Y) represents a tuple of

two streams, X and Y. Considering processes as mapping functions, the above

KPN can be mathematically represented as

(P,T) = g(X) (7.1)

Z = j(T) (7.2)

Y = h(P) (7.3)

X = f(Y,Z) (7.4)

KPNs have several properties, the most important of which is determinism. For

a deterministic model, the result for an execution is independent of execution
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order, and in the case of KPN, this is mainly due to the blocked read semantic.

Hence, a KPN can be executed sequentially or in parallel with the same outcome.

Non-determinism can be introduced into a Kahn network by several factors. If

a process is allowed to test its inputs for emptiness, the process becomes non-

deterministic since the process can alter the priority for receiving data. If more

than one process is allowed to write to a channel, the system may become non-

deterministic. Similarly, if more than one process is allowed to consume data

from a channel the system becomes non-deterministic since each token should be

generated and consumed exactly once. In a software system, allowing processes to

share variables also introduces non-determinism [144].

One major difficulty with implementing KPNs in hardware is the requirement for

unbounded channel FIFOs. For a KPN, it is not possible to determine whether

it can be executed in bounded memory within a finite time. Lee and Parks [142]

proposed a method to execute several theoretical networks on real-machines with

bounded memory. They propose limiting the FIFO size of each channel to a pre-

defined size and writes to the FIFOs are blocked when the limit is reached. If the

network deadlocks, the size of the smallest buffer is doubled and the execution is

resumed. In general purpose computing systems, the FIFOs are implemented in

system memory such as DRAMs and there can be scheduling algorithms which

can modify the the FIFO size dynamically at run-time based on process require-

ments. In custom computing systems such as FPGA implementations, this dy-

namic scheduling is not possible since FIFO depths are determined at design time.

To map KPNs to hardware, some restrictions and assumptions must be made.

The FIFOs between the processes (modules) must be bounded in size and writes

to them are blocked until there is sufficient space. If the output of one channel is

shared by multiple processes (modules), read operations are blocked until all the

consumer processes are ready to accept data. To avoid deadlocks, applications are

restricted to unidirectional dataflow. In most hardware streaming applications,

this restriction is not problematic as dataflow is inherently unidirectional. In the

next section we discuss using the AXI4-Stream interface to implement the proposed

communication model.
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Figure 7.4: AXI interface timing diagram.

7.4.2 The AXI4-Stream Interface

AXI4-Stream is a type of AXI4 (Advanced eXtensible Interface-4) interface used

for high-speed streaming communication. AXI4 is a part of the ARM Advanced

Microcontroller Bus Architecture (AMBA) AXI Protocol, which is a family of

protocols first introduced in 2003 [145]. Xilinx has adopted AXI as the standard

for interfacing IP cores, starting with Spartan-6 and Virtex-6 devices. With a

minimal number of signals, AXI4-Stream acts as a point-to-point communication

link between a master (which generates data) and a slave (which consumes data).

AXI4-Stream enables data transfer on every clock edge, offering high throughput.

An example timing diagram for an AXI4-Stream interface is shown in Fig. 7.4.

The ACLK signal is a shared clock, of arbitrary frequency. The TVALID signal

is used by the master to indicate that there is valid data on the bus and similarly

TREADY is the signal asserted by the slave to indicate its readiness to accept

data. TDATA is the data bus of desired width. A successful data transfer occurs

when both TVALID and TREADY are asserted in the same clock cycle. In

Fig. 7.4, successful data transfers occurs in clock cycles T3, T5, T6, T9, T10

and T11. Both read and write operations are blocked until both producer and

consumer modules are ready for data communication. Fig. 7.5 shows the signal

connections when multiple consumers are interfaced with a producer. Since the

valid and ready signals are ANDed, valid data transfer occurs only when all the

consumer modules are ready to accept data.
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Figure 7.5: AXI interface signal connection, where 2 consumer modules are
interfaced with a producer module.

7.4.3 Modelling Adaptation

We layer the idea of multiple configurations on top of the data plane model. We

define a configuration as a set of modules in the data plane which implements a

mode of functionality. For example in Fig. 7.1, {M1,M2,M3,M4} comprise a sys-

tem configuration. For an adaptive system, a configuration gives a static snapshot

of dynamic system operation. When the system adapts to a new operating state,

the configuration changes by replacing one or more modules with new ones. This

form of configuration switching is called a structural reconfiguration.

In another scenario, modifications to the system operating characteristics are

achieved by modifying one or more parameters of the modules without physically

replacing them. This could be for actions like updating the coefficients of a digital

filter. We call this form of reconfiguration a parametric reconfiguration. Ideally

a system designer should be able to model both these types of reconfiguration in

a way that suits the applications without worrying about how they are actually

implemented.

Conceptually, the structural reconfiguration replaces one data plane KPN with

another KPN, representing a different system configuration. Parametric reconfig-

uration is modelled using tunable parameters of the modules in the data plane.
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Figure 7.6: Mapping of the proposed architecture to the Zynq hybrid FPGA.

The control plane model of computation is not restricted in our framework. In-

stead, the adaptive system designer is free to choose the most suitable model, e.g.

Petri nets, state machines, Markov chains, or others. A clear interface to the data

plane is defined and the control plane implementation can monitor events and

modify parameters through this interface.

7.4.4 Architecture Mapping

As discussed in previous chapters, the new Zynq hybrid FPGA is an ideal platform

for adaptive systems implementation due to its tightly integrated processor (PS) -

reconfigurable fabric (PL) architecture. The adaptive system data plane is imple-

mented on the Zynq PL with the hardware modules assigned to different PRRs.

Structural reconfiguration is achieved by configuring the PRRs with appropriate

partial bitstreams. The control plane is implemented as two logically separate soft-

ware components called the adaptation manager and the configuration manager

running on the Zynq ARM processor as shown in Fig. 7.6. The adaptation manager

is software written by the system designer that implements the control loop dis-

cussed in Section 7.3.1 in an implementation-independent form. It communicates

with the configuration manager through an API provided by our framework. The
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configuration manager performs the architecture-dependent structural and para-

metric reconfigurations by loading specific partial bitstreams or varying module

register values.

The adaptation manager can be written with simple algorithms like state machines

or using complex techniques based on genetic or evolutionary algorithms as an

adaptive system designer may want to explore. Since the adaptation manager is

written at a higher level and abstracted from the details of PR implementation

by the configuration manager, this allows adaptation techniques to be explored

independently of detailed implementation.

An important factor in data plane implementation is inter-module communication.

For partial reconfiguration, different configurations of the same PRR should have

a consistent interface. We adopt AXI4-Stream for high-throughput inter-module

communication. IP cores from Xilinx as well as modules generated using high-level

synthesis languages such as Vivado HLS readily support this interface. Fixing the

communication interface allows our framework to more easily compose modules.

For communication between the control and data planes, a lightweight interface

is required. This interface is used for parametric reconfiguration by modifying

module registers. Since the control plane is implemented in software, this interface

is memory mapped. All module parameters are mapped to the module register

space, and this is later mapped to the unified address map of the processor to

allow setting of parameter values. AXI4-Lite is an ideal candidate for this and is

supported between the Zynq PS and PL.

7.5 Design Flow

Fig. 7.7 shows our proposed adaptive system design flow. The flow includes

both software and hardware, accepts user specifications, applies optimisation al-

gorithms, and interfaces with vendor tools through a set of custom scripts. The
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Figure 7.7: Proposed design flow for PR based adaptive systems design, show-
ing steps performed by the user, vendor tools and the framework.

adaptive system designer describes the overall system as a composition of mod-

ules from a library of parameterised modules, or custom modules designed to the

required interface specification. They also describe how the system should adapt

between different valid configurations in software. Our tool takes these descrip-

tions and creates a working partially reconfigurable system without the designer

needing to work at the detailed hardware level. We adapt our previous parti-

tioning and floorplanning algorithms discussed in Chapters 4 and 5 to develop an

integrated tool-flow and add automated mapping to Zynq hybrid FPGAs. The

following sections describe each step in more detail.
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1 <configurations >
2 <config name="tx_chain">
3 <module name="encoder",source="encoder.v",input="none">
4 <parameter standard="enc1"/>
5 </module>
6 <module name="modulator",source="modulator.v",input="encoder">
7 <parameter standard="mod1"/>
8 </module>
9 </config>

10 <config name="rx_chain">
11 <module name="demodulator",source="demodulator.v"input="none">
12 <parameter standard="dmod1"/>
13 </module>
14 <module name="decoder",source="decoder.v",input="demodulator">
15 <parameter standard="dcod1"/>
16 </module>
17 </config>
18 . . .
19 </configurations >

Figure 7.8: Configuration specification in XML format. Each configuration is
specified by its name and the list of modules.

7.5.1 Specification

The primary designer inputs to the proposed framework are the configuration

and adaptation specifications. The configuration specification details the differ-

ent valid system configurations and the corresponding library modules present in

each configuration. It is entered in XML format as shown in Fig. 7.8. Each con-

figuration has an associated name and the associated modules in the processing

chain. For each module, the HDL source file (in Verilog) and module that pro-

vides its input data in the processing chain are also specified. A blank previous

module (input = none) indicates the starting of the chain. This file could also be

generated automatically from a GUI that allows users to drag and drop library

modules to create configurations. While selecting modules, users can specify which

parameters they require access toat run-time and constrain their possible values.

These parameter modifications may lead to parametric or structural reconfigura-

tion, which the tool takes care of. In the case of parametric reconfiguration, only

the user selected parameters are address mapped to internal registers to reduce

resource utilisation.

The configuration specification also lists the possible parameter values for modules.

Module parameters can be changed at runtime, and as discussed in Section 7.4.3,

that could lead to a PR reconfiguration or the setting of some register values.
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The tool automatically analyses parameter definitions and elaborates the configu-

ration specification to include additional configurations resulting from parametric

reconfiguration of the system. The distinction between parametric and structural

reconfiguration is thus abstracted from the designer’s point of view, so that they

have a unified model for reconfiguration.

The adaptation specification contains the software code for the adaptation manager

described in Section 7.4.4. Since the low-level configuration management details

are transparent to the adaptation manager, it can be independently developed

based on the configurations specified in the configuration specification. Users

can choose the adaptation technique of their choice and integrate it with the

reconfiguration manager using the provided software API. Sample state machine

adaptation manager templates are provided to assist developers.

Based on the configuration specification, the framework first uses the vendor syn-

thesis tool (XST) to synthesise all the modules for the target FPGA, to determine

resource requirements. Scripts extract the number of CLBs, DSP blocks and Block

RAMs from the synthesis reports and these numbers are later used for design par-

titioning and floorplanning.

7.5.2 Partitioning and Interface Generation

The partitioning step involves determining the number of reconfigurable regions

(PRRs) and allocating modules to them. The way the system is partitioned greatly

influences resource requirements and reconfiguration time, as we explored in Chap-

ter 4. We apply the algorithm proposed in Chapter 4, targeting minimised total

reconfigurable area to reduce reconfiguration time and system dynamic power. A

detailed description of this algorithm is presented in Section 4.7.

After partitioning, wrapper modules that instantiate the modules in each parti-

tion and configuration are generated, ensuring a unified interface across different

configurations. A pr system top wrapper is also generated which instantiates and

connects all the PRRs as black boxes. The generated wrapper module is in IP
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core format, which can be directly imported to Xilinx’s XPS tool. As detailed in

Section 7.4.4, using a consistent interface (AXI4-Stream and AXI4-Lite) across all

the modules enables automatic wrapper generation and automatic region instan-

tiation.

7.5.3 Floorplanning

Floorplanning involves determining the physical locations of the PRRs on the PL

fabric. The algorithm described in Chapter 5 is applied to determine the PRR lo-

cations, while minimising total resource wastage. The final output of floorplanning

is a user constraints file (UCF) specifying the coordinates of the PRRs.

7.5.4 Hardware Integration

At this stage the designer can add the outputs of partitioning (pr system top

wrapper) and floorplanning (UCF file) to a Zynq embedded project using the

Xilinx XPS software. The AXI4-Lite interfaces of the wrapper module coming

from the reconfigurable modules must be connected to a processor AXI master

interface. Although this step could be automated, user intervention offers the

flexibility to choose additional system peripherals and to connect the input/output

data streams from the PR system either to the system memory or to external

peripherals. During this step, XPS automatically assigns base addresses to each

of the AXI4-Lite interfaces connected to the PS.

The designer can choose to use either the PCAP or the ZyCAP controller de-

scribed in Chapter 6. The PCAP does not consume PL resources, but has modest

reconfiguration throughput, while ZyCAP provides three times this throughput at

the expense of some PL resources.
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7.5.5 Place and Route and Bitstream Generation

The designer now runs the automated scripts which direct the vendor placement

and routing tools, then the bitstream generation tool to generate all the necessary

partial bitstreams and the full system bitstreams. The most resource intensive

configuration is implemented first since the quality of static region routing depends

upon the first configuration implemented. The generated partial bitstreams must

then be copied to an SD card which is inserted in the board.

7.5.6 Software Implementation

As described in Section 7.5.1, the adaptation specification is programmed by the

user, referring to the configurations defined in the configuration specification. It

is written in C compatible with the Zynq ARM compiler. The framework auto-

matically generates the configuration manager (CM) based on the configuration

specification and the output of the partitioning step. The CM also maps all the

parametric registers to the processor address map based on the base addresses

assigned to the modules during hardware integration.

The API provides functions for determining the present configuration (get config())

and for changing configuration (set config(configuration name)). The designer

does not have to worry about which partial bitstream corresponds to which con-

figuration or where they are stored. The configuration name used in the API is

the same as the one specified by the user in the configuration specification file.

APIs are also provided for accessing hardware module parameters (get param

(module,parameter)) and modifying them (set param (module,parameter,value)).

Changing parameters sometimes leads to the reconfiguration of modules, which is

automatically handled by the CM.

Unlike other PR management flows, the user does not explicitly load partial bit-

streams to reconfigure the system. Rather, the software developer thinks in terms

of modules and configurations, rather than bitstreams or regions.
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Figure 7.9: An active transmission chain.

The CM also contains the ZyCAP driver in case the user decides to use it. The

software modules are then compiled to generate the final software executable.

7.6 Case Study

The framework is implemented in the Python programming language and inte-

grated with Xilinx command-line tools and EDK 14.6. To demonstrate the effec-

tiveness of our framework, we implement a multi-standard cognitive radio trans-

mitter, comprising the blocks shown in Fig. 7.9. The baseband transmitter can

be configured with different OFDM symbol lengths and frame formats based on

three standards: IEEE 802.11, IEEE 802.16, and IEEE 802.22. An active trans-

mission chain has the structure shown in Fig. 7.9. The main specifications of the

transmitter blocks are summarised in Table 7.1.

The modulator supports QPSK, 16-QAM, and 64-QAM modulation schemes. The

pilot block forms the OFDM symbol according to the specification of the different

Specifications IEEE 802.11 IEEE 802.16 IEEE 802.22

FFT size (NFFT ) 64 256 2048

CP Length 16 32 512

Number of data carriers 48 192 1440

Number of pilots 4 8 240

Modulation types QPSK, 16-QAM, 64-QAM

Table 7.1: System specifications for the case study.
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Configuration Modulator Pilot Preamble IFFT

Tx 11 Q QPSK PI11 PR11 IFFT11

Tx 11 16 QAM16 PI11 PR11 IFFT11

Tx 11 64 QAM64 PI11 PR11 IFFT11

Tx 16 Q QPSK PI16 PR16 IFFT16

Tx 16 16 QAM16 PI16 PR16 IFFT16

Tx 16 64 QAM64 PI16 PR16 IFFT16

Tx 22 Q QPSK PI22 PR22 IFFT22

Tx 22 16 QAM16 PI22 PR22 IFFT22

Tx 22 64 QAM64 PI22 PR22 IFFT22

Table 7.2: Transmitter Configurations.

IEEE standards. The preamble (used for active gain control, frame detection,

synchronisation and channel estimation at the receiver) is inserted by the pream-

ble block. The IFFT block performs the inverse-fast Fourier transform (IFFT)

to modulate the subcarriers in the frequency domain. The parameters of the pi-

lot (NUM PILOT ), preamble (CP LEN ) and IFFT (LEN ) modules are OFDM

standard dependent and their modification leads to structural reconfiguration.

Overall, combining the different OFDM standards and modulation schemes, there

are 9 valid configurations, as shown in Table 7.2.

In the configuration specification, only three are listed (conf 802 11, conf 802 16

and conf 802 22) with a modulator parameter (SCM ) that has three possible val-

ues, resulting in the 9 configurations. Fig. 7.10 shows the configuration specifi-

cation for the transmitter’s IEEE 802.11 configurations. It is important to note

that from the designer perspective, there are 3 radios with 3 possible modulation

schemes each, set by the SCM parameter, which can take any of the three val-

ues (QPSK, QAM16 and QAM64). A single configuration is expanded into three
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1 <configurations >
2 <config name=" conf_802_11">
3 <module name=" modulator", source ="\src\modulator.v", input ="none">
4 <parameter SCM="QPSK ,QAM16 ,QAM64"/>
5 </module >
6 <module name="pilot", source ="\src\modulator.v", input =" modulator">
7 <parameter NUM_PILOT ="4"/>
8 <parameter TYPE ="0"/>
9 </module >

10 <module name=" preamble", source ="\src\pilot.v", input =" pilot">
11 <parameter CP_LEN ="16"/ >
12 </module >
13 <module name="ifft", source ="\src\ifft.v", input=" preamble">
14 <parameter LEN ="64"/ >
15 </module >
16 </config >
17 </configurations >

Figure 7.10: Configuration specification in XML format for 802.11 standard.

separate configurations by the tool during the configuration specification analy-

sis. The parameter specifying the pilot TYPE can also accept different runtime

values, which determines the subcarrier type (such as null, data, positive pilot,

negative pilot). But modifying this parameter causes no structural reconfigura-

tion since this parameter only sets an internal register. The software can modify

this register through the AXI4-Lite interface.

The adaptation manager software was written in C, based on a state machine

model, where each state represents a configuration listed in the configuration spec-

ification file as shown in Fig. 7.11. External events to trigger changes in config-

uration were emulated using GPIO pins. These would initiate a request to the

reconfiguration manager to initiate configuration switching.

1
2 switch(configuration) {
3
4 case conf_802_11:
5 if(gpio == 2) {
6 mod = get_param(modulator ,SCM);
7 if (mod == QPSK)
8 configuration = conf_802_11;
9 else if (mod == QAM16)

10 configuration = conf_802_16;
11 else
12 mod = conf_802_22;
13 }
14 else
15 set_param(modulator ,SCM,QAM16)
16 break;
17 .
18 .

Figure 7.11: Configuration specification code snapshot.
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Implementation Registers LUTs BRAMs DSPs

Static 23223 17701 18 30

Single Region 15094 11089 11 15

Four Region 15364 11851 11 15

Proposed framework 15114 11204 11 15

Table 7.3: Resource utilisation comparison between static implementation and
different PR based method.

The baseband transmitter is implemented on a Xilinx ZC702 evaluation board

hosting a Zynq XC7Z020. Running the proposed partitioning flow on the config-

uration specification generates a design with two PRRs, one containing only the

modulator and the other containing the pilot, preamble and IFFT blocks. This re-

flects the expectation we might have given the different configurations, but again,

the designer need not determine or even be aware of this.

In Table 7.3, we compare the resource requirements for the system using our

framework, and using other partitioning schemes discussed in Section 7.5.2. A

static fully-multiplexed implementation is included for reference.

It is clear that in such a dynamically adaptive system, PR based approaches offer a

significant saving over a multiplexed static implementation. The scheme proposed

by our tool is also more efficient than a standard one region per module scheme,

while being within 1% of the resource usage of the most resource efficient single

region scheme.

The total power consumption for the system can be broken down into the processor

subsystem and its supporting infrastructure, and separately, the power consumed

in the baseband. Table 7.4 shows the consumption in the basic infrastructure.

Power is measured using Texas Instruments Fusion Digital Power Designer, which

communicates with the on-board power supply controllers over USB.

Table 7.5 shows the measured power consumption for the different operating modes

in the PL while executing the largest configuration, 802.22-QAM64 . All tests are
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(a) (b)

Figure 7.12: On-board power consumption measured for (a) Multiplexed sys-
tem (b) PR system (Single region)

conducted with the baseband running at a clock frequency of 100 MHz. Fig. 7.12

shows the output of the TI USB adapter when measuring the power consumption

for the multiplexed and the PR system. Measuring the PL implementation with

no baseband indicates that the test infrastructure consumes 95 mW, which can be

subtracted from the total power consumption.

A lower resource requirement using PR results in lower dynamic power consump-

tion as shown in Table 7.5. Further savings are possible when using PR since if

the radio is not required at any point in time, blank bitstreams can be loaded,

eliminating power consumption in the programmable logic.

Table 7.6 shows the resulting reconfiguration times for different schemes. These

numbers are based on reconfiguration using the Zynq PCAP to allow for com-

parison with a full reconfiguration (since a complete PL reconfiguration cannot

be performed using the ICAP controller). Using the ZyCAP controller included

in our framework reduces reconfiguration time by a factor of 3. A single region

Component Power (mW)

Processor core power 400

Processor aux. power 250

Logic aux. power 55

Table 7.4: On-board measured power consumption.
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Style Power (mW)

Static 79

Single Region 33

Four Regions 54

Proposed PR method 43

PR with blank bitstream 0

Table 7.5: Dynamic power consumption in the baseband for different schemes.

scheme requires the whole region to be reconfigured any time one module is recon-

figured. Since the total resource requirement for the four region scheme is higher,

the total reconfiguration time is higher than the arrangement determined by the

Scheme Bitstream (Bytes) Reconf. time (ms)

Full reconfiguration 4045564 31.12

Single Region 706192 5.18

Four Regions

Region-1 14544 0.11

Region-2 14544 0.11

Region-3 677104 5.12

Region-4 14544 0.11

Total 720736 5.45

Proposed PR method

Region-1 14544 0.11

Region-2 691648 5.07

Total 706192 5.18

Table 7.6: Reconfiguration time for PR and non-PR based methods.
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framework when the transmitter switches from one OFDM standard to another.

Another benefit of the proposed partitioning is that switching only the modulation

scheme can be done in minimal time as the modulator is implemented in its own

region.

The framework enables radio developers to try different adaptation algorithms for

efficient spectrum usage without worrying about implementation or reconfigura-

tion details. This enables faster system prototyping and lower engineering effort,

thus improving design productivity. As is clear, the low-level details are consid-

ered and optimised by the framework, but abstracted from the designer’s point of

view.

7.7 Summary

This chapter has introduced an automated framework for the design of dynamically

adaptive systems using partial reconfiguration. It takes a high-level description of

an adaptive system, automatically partitions the design into reconfigurable regions

and determines a floorplan. Runtime adaptation control is also automatically

generated, isolating the designer from the low-level aspects of the implementation.

We have shown an example application to demonstrate the effectiveness of the

proposed framework. Our framework is also suitable for integration with other

high-level PR tools such as those deriving partitions from task-graphs, allowing

for easy validation of results on real hardware.

The framework, named CoPR, has been released in the public domain, so it can

be used by researchers intending to incorporate PR into their systems.



Chapter 8

An Open source Development

and Testbed for PR Systems

8.1 Introduction

In previous chapters, we discussed how PR can enable the implementation of adap-

tive systems on FPGA platforms. One major challenge faced by PR based system

developers generally is hardware validation. In Chapter 7, we discussed the im-

plementation strategy for PR based systems in an embedded environment using

hybrid FPGAs. But often, FPGAs are used as sub-systems tethered to a host

machine with the data plane implemented on the FPGA and the control plane im-

plemented using an general purpose processor in a host PC. This is especially true

for non-hybrid FPGA platforms, which do not contain a fully-fledged processor.

For these systems, the communication and reconfiguration costs are much higher

as they are carried out through standard communication interfaces. Integrating

FPGAs within general purpose computers also allows PR to be leveraged fo im-

plementing accelerators within larger software systems, as well as easing system

testing and verification, with the host offering a software view of the hardware

resource.

155
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Though the development time for FPGA designs is much improved over ASIC de-

sign, validating FPGA applications on real hardware remains challenging. A key

reason is that managing interfaces to the FPGA and the flow of data is cumber-

some and typically addressed in an ad-hoc manner, precluding re-use. Achieving

fast reconfiguration is challenging in such a general computing environment due to

the generally supported slow external configuration interfaces such as JTAG. Fur-

thermore, use of external interfaces adds additional complexity in terms of cabling

and driver support on the host.

Recently, researchers have developed open source frameworks to enable easier in-

terfacing between a host PC and FPGA boards [146, 147]. These platforms offer

an API that abstracts the interface, enabling FPGA designs to be accessed ef-

ficiently from software on the host. These platforms only support static FPGA

designs, and in some cases require a system reboot in order to change the FPGA

design. In scenarios where multiple designs, or alternative variations of a design,

need to be tested this can lengthen iterations, adding to development effort.

We argue that a single PCI Express (PCIe) interface can manage both FPGA

configuration and data transfer, resulting in high throughput data transfer and

fast reconfiguration. The communication infrastructure and reconfiguration man-

agement is placed in the static region, allowing the physical link to be maintained

during reconfiguration of the application(s) in the PRR(s).

Reconfiguration through external interfaces such as JTAG is unsuitable due to

its long latency in the order of seconds. Reconfiguration from on-board external

non-volatile memory is another option but is severely limited by a storage capac-

ity of just a few bitstreams. The ICAP macro can enable reconfiguration within

tens of milliseconds, as we discussed in Chapter 6. Hence, enabling reconfigura-

tion over the PCIe interface, by way of the ICAP also opens up the possibility

for regular reconfiguration from software, with a practically unlimited bitstream

storage capacity. In this chapter, we describe an open source development and ex-

perimentation framework that interfaces FPGA boards with a host PC over PCIe,
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using PR to manage reconfiguration. This frameworkd can serve as a verifica-

tion platform for PR based designs, or as a platform for integrating reconfigurable

accelerators in large software systems.

The work presented in this chapter has also been discussed in:

• K. Vipin, S. Shreejith, D. Gunasekara, S. A. Fahmy, and N. Kapre, System-

Level FPGA Device Driver with High-Level Synthesis Support, in Proceed-

ings of the International Conference on Field Programmable Technology

(FPT) , Kyoto, Japan, December 2013, pp. 128-135. [148].

• K. Vipin and S. A. Fahmy, DyRACT: A Partial Reconfiguration Enabled

Accelerator and Test Platform, to appear in Proceedings of the International

Conference on Field Programmable Logic and Applications (FPL), Munich,

Germany, September 2014. [149].

8.2 Related Work

Numerous approaches to interfacing FPGAs with host PCs have been proposed.

A PCI-X based interface was described in [150] achieving a throughput of up to

667 MB/s. SIRC [146] is another framework for interfacing a Windows host PC and

an FPGA board over Ethernet. However, Ethernet fails to offer the throughput

capabilities often required for such software-hardware systems. Recently, frame-

works that interface over higher throughput PCI Express (PCIe) links, such as

RIFFA [147, 151] and OCPI [152], have emerged. These frameworks enable static

FPGA designs to be accessed through an abstracted software API on the host, in-

cluding hooks for different programming languages. However, in some cases, these

frameworks require a host reboot when the FPGA application is reconfigured, or

they rely on PCIe features that can be unreliable to support hot-reconfiguration.

Furthermore, loading new user logic requires complete re-implementation of the

full design, including fixed communication infrastructure. This can lead to issues

with timing closure for large designs, and consumes considerable time. Hence, the
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use of these frameworks in the context of dynamically reconfigurable accelerators

is not possible.

For designers who build partially reconfigurable systems, testing remains an issue.

A functional approach was proposed in [153], however a real hardware test using

bitstreams requires considerable effort in implementing the full communication

and reconfiguration architecture, and this is often done in an ad-hoc manner.

While reconfiguration time may not be an essential factor to consider in a testing

platform, minimising it would allow this framework to be used as a platform for

reconfigurable hardware accelerators in general purpose PCs. If not managed

efficiently, reconfiguration can consume a considerable amount of overall system

execution time in software-hardware systems [154, 155]. While PR is supported

through the JTAG interface, internal controllers such as the ICAP offer much

better performance, as they provide direct access to the configuration memory

from the FPGA fabric. Some have even suggested alternative external interfaces

like RS-232, though the achievable throughput is clearly limited [156]. Vendor-

provided ICAP controllers offer poor throughput as we saw in Chapter 6, though

the ICAP interface itself is capable of much higher throughput.

For this framework, we propose to load partial bitstreams over the PCIe interface

that is also used for data communication. This has been demonstrated by Xilinx,

but with a low reconfiguration speed of 30 MB/s and supporting only a one-time

reconfiguration [157]. This approach was improved in [158], enabling multiple

reconfigurations, but the reconfiguration speed remained low due to the lack of

DMA support.

8.3 Contributions

We present a framework incorporating a hardware design and associated software

interface for loading PR based designs into an FPGA over a static PCIe interface,

then allowing high throughput communication between the host and hardware
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Figure 8.1: Framework hardware architecture.

design. Reconfiguration and data throughput are shown to be close the the theo-

retical maximum supported by the PCIe interface. This framework is of interest for

adaptive system development, as it enables hardware validation of the dataplane

and verification of the reconfiguration management software. It also facilitates

the implementation of loosely-coupled adaptive systems with a PC host, and the

integration of reconfigurable accelerators within larger software programs running

on a host PC.

8.4 Hardware-Software Architecture

The hardware framework is comprised of the control logic and user logic, as shown

in Fig. 8.1. The control logic implements interface management, reconfiguration

control, and clock management, while the user logic implements the design under

test (DUT) such as the adaptive system dataplane. The control logic is imple-

mented in the static region, while the user logic is implemented using one or more

partially reconfigurable regions (PRR), which can be reconfigured at runtime over

PCIe. The framework is interfaced with a host machine such as a PC or a work-

station through the PCIe interface. The software to manage the framework, such
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as the reconfiguration manager, runs on the host processor. The following sections

describe each block of the platform in detail.

8.4.1 PCIe Endpoint Block

The PCIe bus standard follows a layered communication architecture with physi-

cal, data link, and transaction layers. The physical layer manages low level electri-

cal and logical operations whereas the data link layer implements flow control and

interface reliability. We use the Xilinx PCIe Integrated Endpoint Block, configured

for PCIe Gen 2 ×4 link width to implement the physical and data link layers.

Theoretically this gives a maximum throughput of 2 GB/s per direction in full-

duplex mode, and this is portable across all Virtex-6 and Virtex-7 FPGAs. Newer

boards can support higher bandwidths, which can be exploited with some rework-

ing of our interface. The backend of the PCIe block is a 64-bit wide AXI4-Stream

interface clocked at 250 MHz.

The maximum payload size (MPS) for the PCIe block is set to 256 Bytes and the

block uses 4 BRAM based buffers to store the PCIe packets. PCIe defines the MPS

as the maximum packet size allowed for an endpoint. When an endpoint generates

packets, the packet size should not exceed this size and the packets received by the

endpoint will always be less than or equal to this size. The endpoint can request

an MPS between 128 to 4096 Bytes and this is set by the host during PCIe

initialisation. Keeping the MPS size smaller reduces the achievable throughput

due to the packet overhead, but it reduces the buffering requirement and makes

the implementation portable across multiple host machines. The maximum read

request size (MRRS) for the endpoint when it makes memory read requests is set

to 4096 Bytes for better read performance.
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8.4.2 PCIe Transaction Layer

The Endpoint block is directly interfaced with the receive and transmit engines,

which together act as the PCIe transaction layer. Here, transaction layer pack-

ets (TLPs) are generated and consumed, representing the unit of communication

for PCIe. TLPs follow a specific packet format as outlined in the PCIe specifi-

cation [159]. Each TLP has a header field specifying the type of packet such as

memory read, memory write, or read completion. Memory read and write packets

are used to initiate a read or write operation respectively, and a completion packet

contains the result of a read operation. The receive engine decodes received TLPs

and routes them to the appropriate target. If the memory request is for an address

location below 0x400, it is routed to the global register set, otherwise it is directed

to the user address/data interface. The transmit engine generates memory read

TLPs during the DMA operation to fetch data from host memory, memory write

TLPs to transmit data from the FPGA to host memory, and completion TLPs in

response to read requests from the host.

8.4.3 Global Register Set

This module implements all the control and status registers required for interface,

communication and configuration management. An overview of important regis-

ters implemented and their address map is given in Table 8.1. The control register

is used to initiate DMA operations between the host and FPGA, as well as to

trigger reconfiguration operations. The status register is updated after each DMA

or reconfiguration operation, allowing the host to ascertain operation completion.

The user control register implements bits for selectively resetting the user logic as

well as to select the clock frequency for the user stream interface. To initiate a

reconfiguration operation, the host sets the bitstream size and its starting location

in the host memory in the CONF LEN and CONF ADDR registers before setting

the control register bit. Separate address and length registers are used to enable
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multiple concurrent DMA operations between the host and user stream interfaces

(the table shows a single such set).

This module also implements the PCIe interrupt management mechanism. PCIe

uses an in-band interrupt signalling mechanism called message signalled interrupt

(MSI) for the host attention. The FPGA may generate interrupts under different

scenarios such as completion of DMA or configuration operations or system error

conditions. During system operation, the FPGA may have to generate back-to-

back interrupt messages for concurrent DMA operations. Even if the host uses a

memory buffer to lodge interrupts, this may lead to interrupt misses. This requires

proper interrupt management in the FPGA making sure that the host is ready to

serve an interrupt before issuing a new one.

Interrupt management is implemented using the status register and an interrupt

status tracker in the FPGA and using handshaking between the host and the

Addr. Name Description

00h VER Hardware Version

04h SCR Scratchpad Register

08h CTRL Control register

10h STA Status register

18h UCTR User control register

50h CONF ADDR Reconfiguration address

54h CONF LEN Reconfiguration length

60h USR1 DMA WR ADDR PCIe Stream-1 write address

64h USR1 DMA WR LEN PCIe Stream-1 write length

68h USR1 DMA RD ADDR PCIe Stream-1 read address

6Ch USR1 DMA RD LEN PCIe Stream-1 read length

Table 8.1: The Global Register Set address map.
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FPGA. When the FPGA issues an interrupt, a corresponding bit is set in the

status register. There are separate bits in the status register indicating different

interrupt conditions. The interrupt tracker continuously checks for any bit set in

the status register (the register is wired-or), and when it finds a condition, issues

an interrupt to the host. The tracker then waits for the host to acknowledge the

interrupt before checking the status register again, meanwhile the status register

may lodge more interrupts. The host acknowledges an interrupt by reading the

status register and write-clearing only the bits it finds already set. In this way, a

single interrupt can convey multiple conditions and the tracker makes sure that

the host is ready to accept interrupt before issuing a new one.

8.4.4 PCIe Stream Generator (PSG)

The PCIe Stream Generators (PSG) act as the DMA controllers between the host

and user stream interfaces. Modern processor chipsets do not have DMA con-

trollers between the host memory and downstream PCIe devices. This requires

the DMA controllers to be implemented in the FPGA fabric. Our framework sup-

ports a configurable number of PSGs, with each one managing a single user stream

interface. The present implementation supports up to 4 concurrent streaming in-

terfaces to user logic.

Since a single read request cannot be larger than 4KB (as per the PCIe protocol), a

PSG has to make multiple read requests to the host during DMA write operations

(from host to FPGA). When an endpoint device makes multiple outstanding read

requests, the completion packets may return out of order. Typically, the endpoint

is forced to make a new request only after receiving the data for the previous

request. This can severely degrade performance since there can be a large latency

between a memory read request and its completion. To achieve full bandwidth

during DMA write operations, the FPGA must be able to issue back to back read

requests to the host while managing out of order completions.
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Figure 8.2: PSG DMA read manager

We exploit the tag number field in the PCIe packet headers to implement virtual

channels, which enable multiple outbound read requests. Tag management is

implemented with the help of FIFOs and a set of associated control registers as

shown in Fig. 8.2. The number of FIFOs used is equal to the number of virtual

channels and each virtual channel uses a unique tag number. The FIFO depth

is fixed to 4KB, so that it can store the complete data resulting from a single

read request. A read request generates multiple outbound read requests up to the

number of virtual channels. When packets are received in response to the read

requests, logic checks the tag number and routes the data to the appropriate FIFO.

Later a read sequencer is used to reorder the data by reading sequentially from

the FIFOs. Our experiments show that implementing only two virtual channels

provides sufficiently high throughput performance (75% of PCIe bandwidth) for

PCIe Gen 2 x4.

8.4.5 PCIe Stream Arbitrator (PSA)

Arbitration logic is required to fairly serve the requests from multiple PSGs ac-

cessing the transaction layer. Our present design is scalable, supporting up to 256

stream interfaces with round-robin arbitration among them. In order to achieve
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high performance, a PSG is granted bus access until no other PSG makes a re-

quest. This avoids unnecessary cycle loss present in traditional fixed time slot

based round-robin-arbitration.

8.4.6 Configuration Controller

The configuration controller is a key feature of this framework. It manages partial

reconfiguration of the user logic. We adapt our custom ICAP controller presented

in Chapter 6 to implement this. Instead of reading partial bitstreams from an

external memory, the modified implementation receives partial bitstreams directly

from the host machine over the PCIe bus and configures the PRRs.

Two independent state machines, the configuration state machine (CSM) and the

ICAP state machine (ISM), manage low-level reconfiguration. The configuration

operation is triggered by the control register after the host configures the partial

bitstream size and its location in the host memory in the global register set. The

CSM generates memory read requests to the host to receive the partial bitstream.

Received bitstream data is stored in an 8KB asynchronous asymmetric FIFO, with

a 64-bit write port clocked at 250 MHz. The CSM generates a new read request

only when all data corresponding to the previous request is received and there is

sufficient space in the FIFO. Unlike PSGs, the configuration controller does not

implement virtual channels since the maximum reconfiguration speed supported

by the ICAP is only 400 MB/s and they are not needed.

The ICAP state machine (ISM) constantly monitors the read port of the FIFO

for bitstream data. The FIFO read port is 32 bits wide clocked at 100 MHz – the

maximum clock frequency supported by the ICAP. As soon as the FIFO empty

signal is de-asserted, the ISM fetches data from the FIFO and writes it to the

ICAP. Since the FIFO depth is double the maximum PCIe read request size, the

bitstream read from host memory can overlap with ICAP transactions, maximising

reconfiguration throughput.
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Figure 8.3: System Clocking Architecture.

8.4.7 Clock Management

One restriction in PR-based designs is that the reconfigurable region cannot con-

tain any clock modifying logic such as mixed mode clock managers (MMCMs).

This means the required user logic clock frequency must be provided from the

static region. By default, all user stream interfaces run at the PCIe interface clock

frequency (250 MHz). But it is possible that some user logic implementations

cannot achieve this frequency. Lowering interface clock frequency compromises

throughput for all user logic implementations, so instead, we allow the user to

modify interface clock frequency at runtime.

A dedicated MMCM is used to generate the user interface clock frequency as

shown in Fig. 8.3. The input clock to this MMCM is the 250 MHz PCIe interface

clock. By default the MMCM output is also 250 MHz. At runtime, it is possible

to modify the MMCM output frequency by changing the internal clock multiplier

and divider register values. These registers are accessed through the MMCM DRP

port. Our framework provides a software API function which enables this runtime

register modifications and presently supports 4 user interface clock frequencies

(250 MHz, 200 MHz, 150 MHz and 100 MHz). A separate MMCM is required

for DRP based clock modification since all the output clock signals are disturbed

until the MMCM internal oscillator achieves frequency stability.
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8.4.8 User Logic Adapter

One major challenge associated with PR designs is achieving timing closure. Since

the the routing of the static design does not change with each different PR bit-

stream, it is essential that the static logic achieve timing closure even for very large

user logic. To preserving the routing between the static and the reconfigurable re-

gions, the tools automatically instantiate proxy logic on each region boundary

(static ↔ reconfigurable) crossing net. Proxy logic is implemented in LUTs that

act as pass-through for routing preservation.

Proxy logic can deteriorate timing performance and its placement can exacerbate

this problem. In our experiments, we found the Xilinx implementation tools place

proxy logic inefficiently, causing large net delay and thus failing to achieve the 250

MHz user interface clock frequency. One possible solution for this is to constrain

the locations of all proxy logic close to the interface boundary. Since the user

interface contains hundreds of signals, this is not practical.

The user logic adapter instantiates AXI4-Stream FIFOs in between each PSG and

its corresponding user stream interface. Unlike the CoPR framework presented in

Chapter 7, this platform enables direct data streaming between the control and the

dataplanes through these interfaces. This enables validating task level reconfigura-

tion operations, where each PRR implements an independent hardware task. The
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Stream FIFOs reside in the reconfigurable region and their locations are manually

constrained close to the region boundary. This causes the implementation tools

to place the proxy logic close to the interface boundary and thus help with timing

closure. This adapter is automatically added to the design by our development

infrastructure and users do not have to consider it when designing their user logic.

In addition to the PCIe stream interface, each PRR has two other stream interfaces

to connect with adjacent PRRs, enabling module chaining to implement different

processing chains as shown in Fig. 8.4. This is similar to the AXI4-Stream in-

terface connecting different PRRs in the CoPR framework enabling direct data

streaming between multiple hardware modules to form different system configura-

tions. Similar to the AXI-Lite interface present in the CoPR platform, each PRR

also has an address/data interface, which enables parametric reconfiguration of

the modules implemented in them.

The user logic adapter also performs clock domain crossing management. The

FIFOs used in the adapter are asynchronous in nature with their PSG side port

operating at the PCIe interface frequency (250 MHz). The FIFO ports interfaced

with the user logic interface run at the configurable user logic clock (100MHz to

250MHz). This provides reliable clock domain crossing between the control logic

and the user logic.

8.4.9 Software Infrastructure

The software component of our framework consists of a PCIe driver and a user

library supported on Linux. The low level PCIe driver is an extensively modified

version of the RIFFA driver with the user library providing API functions listed in

Table 8.2. The fpga send data() and fpga recv data() functions are used for DMA

transfer between the host and user stream interfaces. The specific user stream

interface number is provided as an argument to these APIs. The fpga reconfig()

function is used to initiate a reconfiguration operation by specifying the partial
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API Function Name Description

fpga send data(channel, data,

len, block)

Initialize a DMA transfer between
the host and channel of array
data of length len

channel : USERPCIE1..4

block : blocking/non-blocking
selection when target is USER in-
terface

fpga recv data(channel, data,

len, block)

Similar to fpga send data() but
to read data from the host

fpga reconfig(bitstream) reconfigure the FPGA with the
specified bitstream

fpga wait interrupt (channel) Synchronization function for data
transfers.

fpga reg wr(addr,data) Write single 32-bit register

fpga reg rd(addr) Read single 32-bit register

user set clk(frequency) Set the clock frequency to the
user logic. (250, 200, 150 and 100
MHz)

Table 8.2: Framework user API functions.

bitstream corresponding to required PRR. The high-level reconfiguration man-

agement for this platform using system level configurations is to be integrated in

future work.

For DMA operations, buffers are reserved in the system memory at system boot

time. Each buffer is 4MB in size and each DMA operation usually uses 2 DMA

buffers in a double buffering fashion. During DMA write operations, the first 4MB

of user data is copied to a DMA buffer and the address of the buffer along with the

buffer size are configured in the corresponding FPGA registers. While the FPGA

reads data from this buffer, the next 4MB of user data is copied to another DMA



Chapter 8 An Open source Development and Testbed for PR Systems 170

buffer. When the FPGA indicates the completion of the data transfer correspond-

ing to the first DMA buffer through an interrupt, the information corresponding

to the second buffer is configured in the FPGA. The first buffer is now free for

copying more user data. This cycle continues until the complete user data is sent

to the FPGA.

For DMA read operations, a similar double-buffering based scheme is used. In

this case DMA buffers are used to store data received from the FPGA and data

reception overlaps with copying data to the user provided buffer from the DMA

buffers.

The send and receive operations can act in both blocking and non-blocking modes.

In blocking mode, the API call returns only after the DMA operation is complete

while in non-blocking mode the API returns immediately after initiating a trans-

fer. Non-blocking operations are supported only for data transfers below 4 MB,

since data transfers above this size require two buffers and interrupt based buffer

management. Non-blocking mode transfer enables overlapping DMA operations to

multiple stream interfaces and overlapped read-write operations providing better

throughput for small data transfers. Non-blocking transfers must be synchronised

with the fpga wait interrupt() function before starting a new DMA operation to

the same channel.

8.5 Implementation and Characterisation

In this section we discuss the implementation details of the platform on multiple

target FPGAs. Detailed communication and reconfiguration performance numbers

are reported. We also present an example application built using the proposed

platform to demonstrate its functionality.
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Figure 8.5: Virtex-7 floorplan for the platform.

8.5.1 Implementation

Xilinx ISE and PlanAhead 14.6 were used for implementation. The proposed

platform was implemented and hardware validated on a Xilinx ML605 development

board containing a Virtex-6 LX240T FPGA and on a VC707 development board

containing a Virtex-7 VX485T FPGA. The static and reconfigurable regions are

area constrained and interface FIFOs are location constrained as shown in Fig. 8.5.

Without the location constraints, the implementation was not able achieve timing

closure on the Virtex-6 for region crossing signals, although this was not an issue

on the Virtex-7 due to its higher speed grade.

The resource utilisation with 4 user stream interfaces enabled is shown in Ta-

ble 8.3. On the Virtex-6 FPGA the platform consumes about 6% of both logic

and BRAMs. On the Virtex-7, logic consumption is about 3% and BRAM utili-

sation is about 2.5%. About 80% of the FPGA area is available as PRRs for user

logic implementation.

8.5.2 Development Framework

One of the reasons for PR design not being widespread is the difficulty associated

with using the vendor implementation tools. To enable easier PR development for
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Figure 8.6: Development Flow for the Testbed.

the proposed test platform, we provide a development environment in the form

of PR automation scripts. The proposed development platform is depicted in

Fig. 8.6. The designer only has to develop the reconfigurable modules conforming

to the predefined user logic interface. The designer then runs the implementa-

tion scripts by specifying the target FPGA board and the reconfigurable region.

The scripts use a database containing pre-synthesised netlists, placed and routed

control logic and implementation constraints for the framework, automatically in-

corporating the specific user logic into the design, and generating the full and

FPGA Virtex-6 LX240T Virtex-7 VX485T

Module Regs LUTs BRAMs Regs LUTs BRAMs

PCIe Core 791 738 4 1402 923 4

Transaction layer 1058 727 0 1069 613 0

DMA Control 2711 2809 12 2564 2519 12

Config. Control 451 328 2 298 261 2

Clock management 85 84 0 85 73 0

User Adapter 1556 791 8 1556 792 8

Total 6652 5477 26 6974 5181 26

Table 8.3: Platform Resouce utilisation
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partial bitstreams. This provides several advantages:

1. The pre-routed control logic has already achieved timing closure using spe-

cific location constraints.

2. Designers are not required to do manual floorplanning.

3. Using pre-routed control logic considerably reduces overall tool execution

time.

4. Since the specific IP-cores are already routed, issues related to software ver-

sion differences are avoided.

If designers are interested in additional exploration of the platform, they are free

to do so by completely reimplementing the control logic using the corresponding

HDL design files and modifying the user constraints file (UCF).

The designer writes the high-level software using the software APIs provided by

the framework. The provided reconfiguration API function (fpga reconfig()) can

be used in user C code to reconfigure the FPGA with the specified user partial

bitsreams, as generated by the scripts. This allows rapid and easy iteration for

testing multiple designs/variations. The framework also makes it possible to inte-

grate a hardware accelerator within a larger software application, by configuring

an accelerator and sending data at high throughput. The software is compiled

using the standard C compiler to generate the software executable.

For hardware validation, a full bitstream is stored in on-board flash memory to

configure the FPGA at system boot time – this contains the full static system and

empty PRRs. At runtime modules can be dynamically swapped in and out using

the API functions. Designers can also explore additional features such as module

chaining by configuring multiple PRRs concurrently and module pre-fetching by

reconfiguring regions shen data is being processed in other regions.
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Figure 8.7: PCIe communication bandwidth (PCIe Gen 2 ×4 configuration).

8.5.3 Characterisation

The host machine for the performance validation was an HPZ420 workstation with

an Intel Xeon E5-1650 3.2 GHz CPU, the Intel C600/X79 series chipset, and 16

GB of DRAM, running Ubuntu 12.04 LTS. A stream based user logic design ca-

pable of sourcing and syncing infinite amount of data, is used to determined data

throughput. The performance measurements were done with the help of Perfor-

mance Application Programming Interface (PAPI) [160]. Overheads such as DMA

controller configuration, interrupt latencies and the interrupt service routines are

included in all measurements.

Fig. 8.7 shows the PCIe communication throughput between the host and FPGA.

Write performance peaks at 1542 MB/s and read performance peaks at 1513 MB/s,

which is more than 75% of the theoretical PCIe throughput. Further performance

improvement is difficult due to packet overheads, host machine limitations and

limited packet buffering in the FPGA. It can be seen that for transfers above

4 MB in size, both read and write performance improve due to the double buffering

scheme used in the host machine. The benefits of non-blocking data transfer for

overlapped read-write operations is also demonstrated. Using this method, it is

possible to achieve a throughput of up to 2.1 GB/s for data transfers below 8 MB

in size.
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Figure 8.8: (a) Overall PCIe bandwidth with varying number of PR modules
(b) PCIe bandwidth to single PR module with varying number of PR modules.

Fig. 8.8(a) shows the total PCIe bandwidth between the host and the FPGA as

the number data streams to multiple PRRs is varied. As more DMA channels are

activated, the total bandwidth increases since the PCIe channel is less idle due

to the simultaneous requests from multiple modules. Fig. 8.8(b) shows the PCIe

bandwidth between a single PRR and the host as the number of DMA channels is

varied. When a single PRR is activated, the complete PCIe bandwidth is available

to it. As the number of PRRs are increased, the bandwidth is equally shared among

them when simultaneous channel requests are received. The interface management

logic ensures that each PR module is guaranteed a minimum bandwidth when

multiple PRRs are present, thus providing overall quality of service. This also

enables prediction of completion time for data processing when the input data

size is known in advance.

Meanwhile, reconfiguration over the PCIe interface achieves a throughput of up to

365 MB/s, which is more than 91% of the maximum supported ICAP throughput.

This margin is due to DMA configuration, initial host memory access latency,

and interrupt latency. For the target Virtex-6 with the present area constraints,

the uncompressed partial bitstream size is 7.036 MB (considering the 4 PR re-

gions together), which can be configured in 20.6 ms. For the Virtex-7, the partial

bitstream size is 16.85 MB and it can be reconfigured in 46 ms. JTAG based

reconfiguration would take about 11 and 21 seconds for the Virtex-6 and Virtex-7

FPGAs respectively. The ML605 also has a 16 MB platform flash which can store
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a single bitstream with reconfiguration taking about 100 ms. The VC707 has a

128 MB BPI flash which can store up to 4 bitstreams and reconfiguration takes

130 ms. Storing bitstreams in the flash is a time consuming operation taking up

to 20 minutes on ML605 and 30 minutes on the VC707. Hence, none of these

other reconfiguration approaches makes sense for dynamically reconfiguring user

logic, especially if this is done for an accelerator within a larger software program,

where such latency can nullify any performance advantage.

Reconfiguration performance can also be improved by enabling bitstream compres-

sion with the amount of compression dependent on the logic in the circuit. For the

user logic in the subsequent case study, containing 1577 registers and 1464 LUTs,

the partial bitstream size was reduced to 1.29 MB, which could be reconfigured in

under 3.6 ms.

8.5.4 Case Study

To demonstrate the effectiveness of the proposed framework in the context of a

software application with hardware accelerators, an example video processing ap-

plication was implemented and tested. The application implements several filters:

a thresholder, inverter, Gaussian filter, Laplace filter and Sobel edge detector.

These were implemented in user logic running at 250MHz with a 64-bit stream-

ing interface. Multiple filters can be configured concurrently in adjacent PRRs

to create more filter effects. The application processes a continuous stream of

640×480 greyscale video frames with 1 Byte/pixel resolution, to produce a con-

tinuous stream of output data. As a streaming application, the hardware latency

is purely a function of the pipeline. Identical filters are implemented in software

on the host (using C) for performance comparison.

Partial bitstreams corresponding to each of these filters are stored in a bitstream

library in the host machine. Data is sent and received from the FPGA board

using the API in non-blocking mode (streaming). The software application can
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Implementation Reconfig. Time Processing time/frame Throughput

(ms) (ms) (frames/sec)

Software 0 1.023 976

Hardware 0 0.153 6510

Software-Hardware 3.698 0.355 2812

Table 8.4: Performance Comparison for software, hardware and hardware-
software implementations.

change from one filter to another, triggering a reconfiguration each time. Ta-

ble 8.4 presents a performance comparison for the inversion filter when used as a

standalone hardware module, a pure software implementation, and as a hardware

accelerator within software code.

A standalone hardware implementation clearly provides the highest performance.

Meanwhile, integrating a hardware accelerator using the proposed framework in-

creases performance by nearly 3× compared to pure software. The reduction in

the performance advantage compared to pure hardware is attributed to the com-

munication latency between the host and the FPGA and the overheads associated

with DMA and interrupt management. This underlines the importance of the

communication between the FPGAs and the host machines when FPGAs are used

as co-processors. Improved performance is expected when the framework is im-

plemented on newer FPGAs that support higher PCIe throughput. More complex

accelerators that spend more time computing would also show increased benefits.

Reconfiguration over PCIe allows a new filter to be reconfigured in under 4 ms,

corresponding to the processing time for 10 frames. Hence, as expected, overall

performance improves as the processing time increases compared to reconfiguration

time. The case study demonstrates a fully functional integration of accelerators

reconfigured over PCIe and integrated within a software application.
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8.6 Summary

In this chapter we presented a platform which enables rapid validation of PR based

systems integrated within a host PC, with data communication and reconfiguration

managed over a PCIe interface. The DMA based streaming architecture achieves

more than 75% of theoretical PCIe bandwidth. Partial reconfiguration over PCIe

reduces reconfiguration time to a few milliseconds compared to several seconds for

JTAG. An API provides functions that make integration easier, and allow for the

use of accelerators in software applications on the host. The unified communication

and reconfiguration infrastructure avoids the need for proprietary software drivers

and dedicated external wiring to the JTAG port. An example application was

implemented, demonstrating the reconfiguration, and data throughput capabilities

of the platform.
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Conclusions and Future work

This dissertation has proposed a framework that enables high-level design of adap-

tive systems using FPGA partial reconfiguration (PR). It has shown that FPGAs

are suitable hardware platforms for high-performance adaptive systems implemen-

tation and that PR offers advantages for such systems. The suitability of hybrid

FPGA platforms, which integrate processors with reconfigurable fabric on the

same physical chip, has also been demonstrated. An open-source verification plat-

form, DyRACT, has also been introduced, making hardware verification of PR

based designs easier and less time consuming. We also presented CoPR for Zynq,

a fully automated flow for implementing PR-based adaptive systems on the Zynq

platform.

This chapter draws the conclusions from the dissertation, highlights its contribu-

tions, and outlines areas for further research.

9.1 Summary of Contributions

The proposed PR based adaptive system development framework can be broadly

classified into two parts: design-time PR methods and tools, and run-time PR

support. Design time methods and tools provide support to the designer during

the hardware design stage of the system. Specifically speaking, we have automated

179
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several operations that previously required manual steps by the designer, showing

that these could help optimise overall system efficiency. The run-time PR support

provides run-time management of reconfiguration, allows for higher level adaptive

design, and a hardware based verification platform to help with testing.

9.1.1 Partitioning and Floorplanning

Present vendor supported PR tool flows, and most of the tools developed by the

research community, require manual partitioning and floorplanning for PR designs.

In Chapters 4 and 5, we demonstrated the impact of these steps on system perfor-

mance and the architecture expertise required from the designer to find efficient

solutions. We proposed methods for automatic partitioning and floorplanning by

considering the architecture of the current FPGAs, and automated these steps.

The proposed methods respect all the constrains specified by the vendor imple-

mentation tools in order to integrate the whole flow. The tools allow different

optimisation strategies such minimising total resource utilisation or minimising

reconfiguration time. This allows the designer to choose the required optimisation

strategy depending on requirements. The feasibility of these tools was demon-

strated through case studies.

9.1.2 Run-time PR Support and Management

The design-time contributions detailed above provide everything necessary for the

PR system to be implemented. However, true adaptive systems need intelligent

management of adaptation that is typically better done in software. During the

design stage, the proposed tools build necessary infrastructure and interfaces for

the management of PR. During runtime the system adapts based on operational

conditions. Present development flows requires adaptation to be explicitly coded

by the designer, who must explicitly state which bitstreams to load making the

software designer essentially the system designer. Furthermore, the performance

achievable with vendor provided reconfiguration infrastructure is poor.
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In Chapter 7, we presented a design framework that allows designers with less

hardware expertise to specify complex adaptation using a high level system spec-

ification. The designer considers only the configurations they are aware of from

the abstract perspective and our tools and runtime system translate this to the

low level reconfiguration steps required to enact the appropriate reconfiguration.

In Chapter 6, we developed two custom reconfiguration controllers, one targeting

traditional FPGA architectures and one targeting hybrid FPGA platforms such

as the Zynq. The controllers achieve near theoretical reconfiguration performance,

thus reducing reconfiguration time substantially while not overburdening the re-

configuration management processor with low-level reconfiguration operations.

9.1.3 Automated PR Development Flow

In Chapter 7, we developed a fully automated PR development flow, called CoPR

for Zynq, targeting hybrid FPGA platforms. A high-level system specification

model is proposed which enables system-level developers to easily compose adap-

tive systems using pre-designed IP cores. The proposed partitioning and floorplan-

ning algorithms were integrated with the vendor implementation flow to create a

complete development flow. It also allows the designer to integrate our custom

ICAP controller (ZyCAP) to achieve near theoretical reconfiguration performance.

The run-time reconfiguration management was also adapted to the hybrid FPGA

platform, which made reconfiguration management easier and independent of the

adaptation logic.

9.1.4 PR verification platform

Finally, in Chapter 8, we introduced an open-source PR system verification plat-

form called DyRACT. PR based hardware verification is more challenging com-

pared to traditional FPGA designs and the communication infrastructure required

for such a platform is tedious to develop. The proposed platform along with the

implementation framework enables users to quickly integrate their PR designs
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with the communication and reconfiguration infrastructure. We demonstrated

that using the same PCIe communication channel, near theoretical reconfigura-

tion performance can be achieved along with high communication throughput.

We also presented the virtual-channel-based PCIe communication infrastructure,

which is scalable while saturating more than 75% of the PCIe bandwidth.

9.2 Future Research Directions

The research reported in this thesis was intended to cover the whole automated

design flow. As such, we have identified a number of interesting research questions

that can be explored in each of these aspects of PR design that we propose be

explored in future work.

9.2.1 Combined Partitioning and Floorplanning

The partitioning and floorplanning tools we proposed operate in sequence with

the floorplanner using the regions determined during partitioning. It might be

possible that a proposed partitioning cannot be floorplanned on the FPGA due

to the spatial arrangement of resources. This would require determination of a

new partitioning. We also saw in Chapter 5 that the rectangular region constraint

sometimes results in wasted extra resources. Combining the two steps together so

that the partitioning algorithm takes into account these limitations might lead to

more predictably achievable floorplans.

In this work, we optimise for total reconfiguration time, based on valid configu-

rations. This can be enhanced by considering only valid configuration transitions

as specified in the adaptation specification. Such optimisations have been demon-

strated for PR implementation of static task graphs, but similar information could

be determined from the adaptation specification of an adaptive system. Further-

more, it might be possible to incorporate measured probabilities of transition to

further enhance the real overall metrics.
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9.2.2 Operating System Support

The reconfiguration manager for Zynq and the driver for ZyCAP have so far been

implemented for the Standalone operating system, a lightweight, vendor-provided

operating system offering high performance but limited features. To attract a

wider interest and to make the framework more portable and accessible, the frame-

work should be ported to an operating system such as Linux, or a real time op-

erating system. This would also allow application designers to use other libraries

in the control plane. Managing reconfiguration within an OS is feasible, but adds

some latency. Providing a more low-level interface that still supports OS inter-

action would be of benefit. An example is the use of a Microkernel hypervisor

to manage the PR process [161]. Understanding how to manage PR within the

context of real operating systems is an area that requires further research.

9.2.3 Integration with HLS tools

The increasing popularity of high-level synthesis (HLS) techniques is a great mo-

tivation for integrating the PR implementation framework with HLS tools such

as Xilinx’s Vivado-HLS. By doing so, the HLS tools can directly use C based

module descriptions and generate corresponding RTL modules, which can be used

by the proposed automation tools and vendor implementation tools for the final

implementation. The HLS tools can integrate more tightly with the proposed

framework, allowing for a design space exploration that includes partial reconfigu-

ration as a consideration. The present automation scripts should also be updated

to function with the new Xilinx Vivado design suite.

9.2.4 Domain Specific IP Libraries

Creating a framework that enables a block-based approach to PR design means

designers will be looking more at the “big picture” adaptation, and would like to

use existing IP for the data plane. It would be beneficial to the community for
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well-tested, well-documented libraries of blocks to be developed for different do-

mains, such as software defined radio, video and image processing and automotive

systems. Designers can then easily integrate these cores into their systems, and

work on the upper layers of the adaptive system. Adoption of a standard AXI

interface by Xilinx for their new IP cores, and similar efforts in the open source

community will help ensure interoperability.

9.2.5 PR Design Benchmarks

A major stumbling block in PR research is the lack of a standard set of PR

benchmarks for comparing PR tools. This often forces researchers to resort to

synthetic circuits or simple examples to demonstrate their proposed algorithms.

As a growing research field, a standard set of benchmarks should be developed to

allow easier validation and comparison of proposed methods in this domain.

9.3 Summary

This dissertation has contributed towards enabling high-level design of adaptive

systems through the partial reconfiguration of FPGAs. Special focus was given

to hybrid FPGAs and this is one of the first pieces of work to demonstrate their

potential in complete system implementation. A number of open source tools and

designs were released as part of this research work, which we hope will be beneficial

to FPGA community in general, and designers of partially reconfigurable systems

in particular.
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